DSpace Repository

Theoretical study of lithium absorption in silicon nanostructures for application as anodes in lithium-ion batteries

Show simple item record

dc.contributor.advisor Vudhichai Parasuk
dc.contributor.author Fadjar Mulya
dc.contributor.other Chulalongkorn University. Faculty of Science
dc.date.accessioned 2024-02-05T10:38:36Z
dc.date.available 2024-02-05T10:38:36Z
dc.date.issued 2022
dc.identifier.uri https://cuir.car.chula.ac.th/handle/123456789/84425
dc.description Thesis (Ph.D.)--Chulalongkorn University, 2022
dc.description.abstract The absorption and adsorption of lithium in silicon nanostructures: silicon quantum dots (SiQDs), silicon nanowires (SiNWs) and silicon nanopores (SiNPs) were studied using density functional theory (DFT) with M06-2X hybrid functional and 6-31G+(d) basis set. The tetrahedral sites, both Tdinner and Tdsurface, are the most preferred sites for lithiation due to their favorable binding energy profiles. For single lithium absorption and adsorption, SiQDs exhibit a binding energy of 1 eV, SiNWs demonstrate a binding energy of 1.28 eV, and SiNPs display a binding energy of 0.73 eV. Similarly, multiple lithium adsorptions yield binding energies of 1.12 eV for SiQDs, 1.21 eV for SiNWs, and 0.94 eV for SiNPs. The binding energy is altered more with the adsorption site, than with the cluster size. Molecular volume had been calculated to assess the volume expansion. A volume change of no greater than 2.51% was observed and it does not vary with the number of Li atoms, but depends on the absorption and adsorption sites. The energy gap of silicon nanostructures depends on the size (the larger being more conductive) and lithiation. Thus, large-sized silicon nanostructures are recommended for anode materials of Li-ion batteries, since the materials can yield high energy density and have small volume expansion with reasonable conductivity.
dc.description.abstractalternative การซึมซับและการดูดซับของลิเทียมในโครงสร้างซิลิคอนขนาดเล็ก: ซิลิคอนควอนตัมดอท (SiQDs), ซิลิคอนนาโนไวร์ (SiNWs) และ ซิลิคอนนาโนพอร์ (SiNPs) ได้ศึกษาโดยใช้ทฤษฎีฟังก์ชันนอลความหนาแน่น (DFT) โดยใช้ฟังก์ชันไฮบริด M06-2X และเบซิสเซท 6-31G+(d) โดยตำแหน่งที่มีลักษณะเป็นพีระมิดทั้ง Tdinner และ Tdsurface เป็นตำแหน่งที่เหมาะสมที่สุดสำหรับการดูดซับลิเทียมเนื่องจากมีพลังงานยึดเหนี่ยวที่เหมาะสม สำหรับการซึมซับและการดูดซับลิเทียมเดี่ยว ซิลิคอนควอนตัมดอทมีพลังงานยึดเหนี่ยว 1 eV ซิลิคอนนาโนไวร์มีพลังงานยึดเหนี่ยว 1.28 eV และ ซิลิคอนนาโนพอร์มีพลังงานยึดเหนี่ยว 0.73 eV สำหรับการดูดซับลิเทียมหลายตัวมีลักษณะคล้ายคลึงกันคือมีพลังงานงานยึดเหนี่ยว 1.12 eV สำหรับ SiQD, 1.21 eV สำหรับ SiNW และ 0.94 eV สำหรับ SiNP การคำนวณปริมาตรโมเลกุลเพื่อประเมินการขยายตัวของโมเลกุล พบว่าการเปลี่ยนแปลงปริมาตรไม่เกิน 2.51% และไม่แปรผันตามจำนวนอะตอมของลิเทียมแต่ขึ้นอยู่กับตำแหน่งการดูดซึมและดูดซับ โดยช่องว่างระหว่างแถบพลังงานของโครงสร้างซิลิคอนขนาดเล็กขึ้นอยู่กับขนาดและการทำปฏิกิริยากับลิเทียม ซึ่งถ้าโครงสร้างมีขนาดใหญ่จะทำให้การนำไฟฟ้าได้ดีขึ้น ดังนั้นโครงสร้างนาโนซิลิคอนขนาดใหญ่เหมาะสำหรับใช้เป็นวัสดุขั้วแอโนดของแบตเตอรี่ลิเทียมไออน เนื่องจากวัสดุดังกล่าวสามารถให้ความหนาแน่นของพลังงานสูงและมีการขยายตัวในปริมาณเล็กน้อยโดยมีค่าการนำไฟฟ้าที่เหมาะสม
dc.language.iso en
dc.publisher Chulalongkorn University
dc.rights Chulalongkorn University
dc.subject.classification Chemistry
dc.subject.classification Materials Science
dc.subject.classification Transportation and storage
dc.subject.classification Chemistry
dc.title Theoretical study of lithium absorption in silicon nanostructures for application as anodes in lithium-ion batteries
dc.title.alternative การศึกษาเชิงทฤษฎีของการดูดซึมลิเทียมในโครงสร้างนาโนซิลิคอนสำหรับการประยุกต์เป็นแอโนดในแบตเตอรี่ลิเทียมไอออน
dc.type Thesis
dc.degree.name Doctor of Philosophy
dc.degree.level Doctoral Degree
dc.degree.discipline Chemistry
dc.degree.grantor Chulalongkorn University


Files in this item

This item appears in the following Collection(s)

Show simple item record