DSpace Repository

Random forest algorithm using quartile-patternbootstrapping for class imbalanced problem

Show simple item record

dc.contributor.advisor Krung Sinapiromsaran
dc.contributor.author Worawit Jitpakdeebodin
dc.contributor.other Chulalongkorn University. Faculty of Science
dc.date.accessioned 2024-02-05T10:38:47Z
dc.date.available 2024-02-05T10:38:47Z
dc.date.issued 2022
dc.identifier.uri https://cuir.car.chula.ac.th/handle/123456789/84449
dc.description Thesis (M.Sc.)--Chulalongkorn University, 2022
dc.description.abstract Nowadays, classification in machine learning serves as a valuable tool for extracting and analyzing real-world datasets. However, an important issue in classification is the problem of class imbalance, which significantly impacts the performance of classifiers. In 2019, a novel approach for a decision tree induction was introduced to address This problem—the Minority Condensation Entropy (MCE) measure that can effectively handle imbalanced datasets. Subsequently, in 2021, a new outlier factor called the Mass ratio - variance Outlier Factor (MOF) was presented that can rank instances based on the dataset density. This thesis proposes a random forest algorithm using quartile-pattern Bootstrapping that incorporates MOF and MCE building a random forest capable of handling binary Class imbalanced datasets. The experimental results on synthesized datasets and real-world datasets indicated that the proposed algorithm outperforms other existing algorithms in terms of Precision, Recall, F-measure, and geometric mean, showing its effectiveness in handling imbalanced datasets and improving classification accuracy.
dc.description.abstractalternative ในปัจจุบันการจำแนกประเภทในการเรียนรู้ของเครื่องเป็นเครื่องมือที่สำคัญสำหรับการ ดึงข้อมูลและการวิเคราะห์ข้อมูลโลกจริงอย่างไรก็ตามปัญหาที่สำคัญในการจำแนกประเภท คือปัญหาของความไม่ดุลของคลาสซึ่งมีผลกระทบต่อประสิทธิภาพของตัวจำแนกประเภท อย่างมีนัยสำคัญในปี 2019มีการนำเสนอวิธีการใหม่สำหรับการสร้างต้นไม้ตัดสินใจเพื่อแก้ ปัญหานี้ —ไมนอริตี้คอนเดนเซชันเอ็นโทรปี (MCE) ซึ่งสามารถจัดการกับชุดข้อมูลที่ไม่ ดุลได้อย่างมีประสิทธิภาพต่อมาในปี 2021มีการนำเสนอตัววัดปัจจัยความผิดปกติ เรียกว่า ปัจจัยความผิดปกติแมสเรโชแวเรียนซ์ (MOF)ที่สามารถจัดลำดับตัวอย่างตามความหนาแน่น ของข้อมูลวิทยานิพนธ์นี้นำเสนอขั้นตอนวิธีป่าสุ่มที่ใช้รูปแบบบูตสแทรปที่รวมMOFและ MCE เพื่อสร้างป่าสุ่มที่สามารถจัดการกับชุดข้อมูลสองคลาสที่ไม่ดุลผลการทดลองบนชุด ข้อมูลสังเคราะห์และชุดข้อมูลจริงแสดงให้เห็นว่าขั้นตอนวิธีที่นำเสนอมีประสิทธิภาพมากกว่า ขั้นตอนวิธีที่มีอยู่ในด้านพรีซีชันรีคอลตัววัดเอฟและค่าเฉลี่ยเรขาคณิตแสดงถึงความสามารถ ในการจัดการกับชุดข้อมูลที่ไม่ดุลและประสิทธิภาพที่ดีกว่าในการจำแนกประเภท
dc.language.iso th
dc.publisher Chulalongkorn University
dc.rights Chulalongkorn University
dc.subject.classification Computer Science
dc.subject.classification Professional, scientific and technical activities
dc.subject.classification Computer science
dc.title Random forest algorithm using quartile-patternbootstrapping for class imbalanced problem
dc.title.alternative ขั้นตอนวิธีป่าสุ่มด้วยบูทสแทรปรูปแบบควอไทล์สําหรับปัญหาคลาสไม่ดุล
dc.type Thesis
dc.degree.name Master of Science
dc.degree.level Master's Degree
dc.degree.discipline Applied Mathematics and Computational Science
dc.degree.grantor Chulalongkorn University


Files in this item

This item appears in the following Collection(s)

Show simple item record