Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/10174
Title: | Prediction of the extent of protein secondary structures using neural networks |
Other Titles: | การทำนายสัดส่วนของโครงสร้างทุติยภูมิในโปรตีนโดยใช้ข่ายงานประสาท |
Authors: | Jurairat Phromjai |
Advisors: | Lerson Tanasugarn |
Other author: | Chulalongkorn University. Graduate School |
Advisor's Email: | lerson@lerson.org, Lerson.T@Chula.ac.th |
Subjects: | Proteins Amino acids Neural networks (Neurobiology) Neural networks (Computer science) |
Issue Date: | 1998 |
Publisher: | Chulalongkorn University |
Abstract: | We present a method for predicting protein structures based on a digital computer of neural networks. The neural networks learned from existing protein how to predict the secondary structure of amino acid sequences. The amino acid properties of amino acids such as hydropathy, hydrophobicity, helical tendencies and amino acid side chain properties were used as input vector. These properties were coded into the amino acid sequences and used as input patterns for both training and testing. Seventy amino acid sequences and twenty-eight amino acid sequences from different proteins were used for training and testing respectively. The percent predictions accuracies of the existence of helix, sheet and turn structures using in the same network were lower than the prediction from separate networks. Each property gave the highest prediction accuracies for helix structure prediction. Properties can be ranked by their abilities to predict protein secondary structures as follow: (1.1) Amino acid side chain properties gave the highest accuracy for the prediction of the existence of helix, sheet turn in the same network, the existence of sheet and turn structure, percent helix, sheet (3 groups) and percent helix (2 groups). (1.2) Hydropathy (2 groups) gave the highest accuracy for the prediction of the existence of helix structure, percent helix and percent sheet (6 groups), percent turn (3 groups) and percent sheet (2 groups). (2) Hydropathy (7 groups) gave the highest accuracy for the prediction of percent sheet and turn (6 groups) and percent sheet (3 groups). (3) Hydrophobicity gave the highest accuracy for the prediction of percent helix (2 groups). The range of percent accuracy prediction from all properties for helix, sheet and turn were between 85-100%, 70-85% and 45-70% respectively. The range of percent accuracy from all properties for predictions of percent helix, sheet and turn (6 groups of 0%, 1-20%, 21-40%, 41-60%, 61-80% and 81-100%) were 35-65%, 30-50% and 25-50% respectively. Teh percent accuracies for percent helix, sheet and turn (3 groups of 0%, 1-50% and 51-100%) were 65-85%, 60-80% and 50-65% respectively. The percent accuracies for percent helix and sheet (2 groups of < 15% and > 15%) were 60-80% and 60-75% respectively. The percent of secondary structure prediction is useful for the folding classes prediction. |
Other Abstract: | งานวิจัยนี้เป็นการศึกษาการทำนายโครงสร้างสามมิติของโปรตีนโดยใช้ระบบประมวลผลข้อมูลแบบข่ายประสาท (Neural Networks) และใช้สมบัติของลำดับกรดอะมิโนที่มีผลต่อโครงสร้างสามมิติของโปรตีนเป็นข้อมูลโดยคาดว่าสมบัติเหล่านี้จะทำให้การทำนายโครงสร้างสามมิติของโปรตีนมีความถูกต้องแม่นยำสูงขึ้น สมบัติที่ใช้ในการสอน Neural Networks ในการศึกษานี้ ได้แก่ hydropathy, hydrophobicity, helical tendencies และ amino acid side chain properties โดยสมบัติเหล่านี้ถูกใช้แทนที่ลำดับของกรดอะมิโนแล้วถูกป้อนเข้าไปใน Neural Networks โปรตีน 98 ตัว ได้ถูกจัดอยู่ในกลุ่มที่ใช้ในการสอน 70 ตัว และจัดอยู่ในกลุ่มที่ใช้ในการทดสอบ 28 ตัว จากผลการทดลองการทำนายว่ามีโครงสร้าง helix, sheet และ turn ในโปรตีนหรือไม่ โดยใช้ network เดียวกันให้ผลของการทำนายถูกต้องน้อยกว่าการทำนายโครงสร้าง helix, sheet และ turn ที่มีการแยก network กันและแต่ละสมบัติจะให้ผลการทำนายโครงสร้าง helix ถูกต้องสูงสุดเมื่อเทียบกับการทำนายโครงสร้างชนิดอื่น ความสามารถของสมบัติๆ ในการทำนายโครงสร้างทุติยภูมิของโปรตีนจัดลำดับได้ดังนี้ (1.1) สมบัติ amino acid side chain ให้ผลการทำนายโครงสร้างว่ามีโครงสร้าง helix, sheet และ turn หรือไม่จาก network เดียวกัน, การทำนายว่ามีโครงสร้าง sheet หรือไม่, การทำนายว่ามีโครงสร้าง turn หรือไม่, ร้อยละของโครงสร้าง helix และ sheet ที่แบ่งเป็น 3 กลุ่ม และการทำนายร้อยละของ helix ที่แบ่งเป็น 2 กลุ่ม ถูกต้องสูงสุด (1.2) สมบัติ hydropathy ที่แบ่งออกเป็น 2 กลุ่ม ให้ผลการทำนายว่ามีโครงสร้าง helix หรือไม่, การทำนายร้อยละของ helix และ sheet ที่แบ่งเป็น 6 กลุ่ม และการทำนายร้อยละของ turn และ sheet ที่แบ่งออกเป็น 3 กลุ่ม และ 2 กลุ่ม ตามลำดับถูกต้องสูงสุด (2) สมบัติ hydropathy ที่แบ่งออกเป็น 7 กลุ่ม ให้ผลการทำนายร้อยละของ helix และ turn ที่แบ่งออกเป็น 6 กลุ่ม, ร้อยละของ sheet ที่แบ่งออกเป็น 3 กลุ่ม ถูกต้องสูงสุด (3) สมบัติ hydrophobicity ให้ผลการทำนายร้อยละของ helix ที่แบ่งเป็น 2 กลุ่มถูกต้อง การทำนายว่ามีโครงสร้างของ helix, sheet และ turn หรือไม่ให้ผลการทำนายถูกต้องในช่วง 85-100%, 70-85% และ 45-70% ตามลำดับ ส่วนการทำนายจำนวนร้อยละของ โครงสร้าง helix, sheet และ turn ในกรณีที่แบ่งร้อยละออกเป็น 6 กลุ่ม (0%, 1-20%, 21-40%, 41-60%, 61-80%, 81-100%) ให้ผลของการทำนายร้อยละของ helix, sheet และ turn มีความถูกต้องในช่วง 35-65%, 30-50% และ 25-50% ตามลำดับ ในการทำนายร้อยละโดยแบ่งร้อยละออกเป็น 3 กลุ่ม (0%, 1-50%, 51-100%) ให้ผลการทำนายร้อยละของโครงสร้าง helix, sheet และ turn มีความถูกต้องในช่วง 65-85%, 60-80% และ 50-65% ตามลำดับ ส่วนการทำนายว่ามีร้อยละของ helix, sheet และ turn ว่าอยู่ในกลุ่มน้อยว่าหรือเท่ากับ 15% หรือ อยู่ในกลุ่มมากกว่า 15% ให้ผลการทำนายถูกต้องในช่วง 60-80% สำหรับโครงสร้าง helix และให้ผลการทำนายถูกต้องในช่วง 60-75% สำหรับโครงสร้าง |
Description: | Thesis (M.Sc.)--Chulalongkorn University, 1998 |
Degree Name: | Master of Science |
Degree Level: | Master's Degree |
Degree Discipline: | Biochemistry |
URI: | http://cuir.car.chula.ac.th/handle/123456789/10174 |
ISBN: | 9743324232 |
Type: | Thesis |
Appears in Collections: | Grad - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Jurairat_Ph_front.pdf | 2.11 MB | Adobe PDF | View/Open | |
Jurairat_Ph_ch1.pdf | 915.24 kB | Adobe PDF | View/Open | |
Jurairat_Ph_ch2.pdf | 1.54 MB | Adobe PDF | View/Open | |
Jurairat_Ph_ch3.pdf | 1.44 MB | Adobe PDF | View/Open | |
Jurairat_Ph_ch4.pdf | 5.9 MB | Adobe PDF | View/Open | |
Jurairat_Ph_ch5.pdf | 1.29 MB | Adobe PDF | View/Open | |
Jurairat_Ph_ch6.pdf | 770.94 kB | Adobe PDF | View/Open | |
Jurairat_Ph_back.pdf | 1.18 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.