Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/1629
Title: Global optimization of recurrent neural networks: a comparison of the genetic algorithm and Tabu search
Other Titles: การหาคำตอบดีที่สุดของเครือข่ายประสาทแบบย้อนกลับ : การเปรียบเทียบระหว่างอัลกอริทึมพันธุกรรมและการค้นหาทาบู
Authors: Kittikorn Tongnimitsawat
Advisors: Boonserm Kijsirikul
Other author: Chulalongkorn University. Faculty of Engineering
Advisor's Email: boonserm@cp.eng.chula.ac.th, Boonserm.K@Chula.ac.th
Subjects: Neural networks (Computer sciences)
Genetic algorithms
Machine learning
Back propagation (Artificial intelligence)
Issue Date: 2004
Publisher: Chulalongkorn University
Abstract: To present the methodology of applying Genetic Algorithm and Tabu Search in finding the global optima in Recurrent Neural Network. Then the result is compared with Backpropagation, the legacy method. The result depicts that Genetic Algorithm and Tabu Search can help Recurrent Neural Network performs better than Backpropagation. This is because the Genetic Algorithm has a cross-over operator to jump off of local optima whilst Tabu Search employs Tabu list to prevent re-cycling search as well as using long term memory to make the searching broader. However, Genetic Algorithm and Tabu Search take more time to find out the solution. In a short time running, Backpropagation can find a solution in some dataset better than others.
Other Abstract: เสนอการนำอัลกอริทึมพันธุกรรมและการค้นหาทาบูมาประยุกต์ใช้กับ การหาคำตอบที่ดีที่สุดของเครือข่ายประสาทแบบย้อนกลับ แล้วเปรียบเทียบกับการเรียนรู้โดยการใช้แบ็คพรอพาเกชัน ผลที่ได้พบว่าการเรียนรู้เครือข่ายประสาทแบบย้อนกลับด้วยอัลกอริทึมพันธุกรรม และการค้นหาทาบูจะส่งผลให้สามารถเรียนรู้ข้อมูลได้ดีกว่า การเรียนรู้โดยใช้แบ็คพรอพาเกชัน เนื่องจากอัลกอริทึมพันธุกรรมและการค้นหาทาบู สามารถหลุดออกจากบริเวณที่เป็นโลคอลได้ ส่งผลให้ค่าความผิดพลาดที่ได้จากอัลกอริทึมพันธุกรรม และการค้นหาทาบูมีค่าน้อยกว่าการเรียนรู้โดยการใช้แบ็คพรอพาเกชัน อย่างไรก็ตาม การนำอัลกอริทึมพันธุกรรมและการค้นหาทาบูมาประยุกต์ใช้ กับการหาคำตอบที่ดีที่สุดของเครือข่ายประสาทแบบย้อนกลับ จะใช้เวลาในการเรียนรู้นานกว่าการเรียนรู้โดยการใช้แบ็คพรอพาเกชัน ซึ่งจะใช้ได้ดีในข้อมูลบางชุด
Description: Thesis (M.Sc.)--Chulalongkorn University, 2004
Degree Name: Master of Science
Degree Level: Master's Degree
Degree Discipline: Computer Science
URI: http://cuir.car.chula.ac.th/handle/123456789/1629
ISBN: 9745315095
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
KittikornTong.pdf1.6 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.