Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/42335
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSaranya Maneeroj-
dc.contributor.advisorSuphakant Phimoltares-
dc.contributor.authorPiyachai Eamsukawat-
dc.contributor.otherChulalongkorn University. Faculty of Science-
dc.date.accessioned2014-05-12T13:34:47Z-
dc.date.available2014-05-12T13:34:47Z-
dc.date.issued2012-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/42335-
dc.descriptionThesis (M.Sc.)--Chulalongkorn University, 2012en_US
dc.description.abstractThere are many researches using Machine Learning (ML) to create new design contents in computer game. The challenging task is to classify game character’s action using ML because it can be straightforwardly implemented in the game, thereby enhancing character learning about how to deploy strategies under different game situations. This makes the game more exciting. Very Fast Decision Tree (VFDT) can classify character’s actions in computer role-playing game (CRPG) simulation but the accuracy is not much improved when the number of character’s actions is increased. In this research, Resilient Backpropagation (RPROP) can improve such accuracy when the character’s actions increase, so RPROP is implemented to classify character’s action in the CRPG simulation and compared the accuracy with VFDT. The static strategies and the changing strategies are tested in these experiments. The results show that at the high number of training data corresponding to the computer game data, the proposed scheme performs better than the existing method. RPROP can be designed to use in computer game to decrease the complexity of programming script and improve the excitement of the computer game by giving the player more alternatives.en_US
dc.description.abstractalternativeงานวิจัยที่ใช้การเรียนรู้ของเครื่องจักรกลเพื่อสร้างเนื้อหาสาระที่ออกแบบใหม่ในเกมคอมพิวเตอร์มีอยู่มากมาย สิ่งที่ท้าทายคือการจำแนกการกระทำของตัวละครโดยใช้การเรียนรู้ของเครื่องจักรกล เพราะสามารถนำไปใช้ในเกมคอมพิวเตอร์โดยตรง และปรับปรุงการเรียนรู้ของตัวละครเกี่ยวกับการใช้กลยุทธ์ภายใต้สภาพการณ์ที่แตกต่างกันของเกม สิ่งนี้ทำให้เกมน่าตื่นเต้นมากขึ้น ต้นไม้การตัดสินใจเร็วมาก สามารถจำแนกการกระทำของตัวละครในโปรแกรมจำลองเกมเล่นตามบทบาทคอมพิวเตอร์ แต่ความแม่นยำนั้นไม่เพิ่มขึ้นมาก เมื่อจำนวนการกระทำของตัวละครเพิ่มมากขึ้น ในงานวิจัยนี้โครงข่ายประสาทแบบแพร่กระจายย้อนกลับที่คืนสภาพได้ ถูกใช้เพื่อจำแนกการกระทำของตัวละครในโปรแกรมจำลองเกมเล่นตามบทบาทคอมพิวเตอร์ และเปรียบเทียบความแม่นยำกับต้นไม้ความคิดไวมาก กลยุทธ์คงที่และกลยุทธ์ที่เปลี่ยนแปลงได้ถูกทดสอบในการทดลองเหล่านี้ ผลการทดลองแสดงให้เห็นว่า ข้อมูลฝึกฝนจำนวนมากตามข้อมูลเกมคอมพิวเตอร์ที่สอดคล้องกันนั้น วิธีการที่เสนอนี้ทำงานได้ประสิทธิภาพดีกว่าวิธีการที่มีอยู่ โครงข่ายประสาทแบบแพร่กระจายย้อนกลับที่คืนสภาพได้ สามารถถูกออกแบบให้ใช้ในเกมคอมพิวเตอร์ เพื่อลดความซับซ้อนในการเขียนข้อกำหนดทางโปรแกรม และเพิ่มความสนุกในคอมพิวเตอร์เกมโดยเพิ่มทางเลือกให้กับผู้เล่นen_US
dc.language.isoenen_US
dc.publisherChulalongkorn Universityen_US
dc.relation.urihttp://doi.org/10.14457/CU.the.2012.507-
dc.rightsChulalongkorn Universityen_US
dc.subjectMachine learningen_US
dc.subjectComputer gamesen_US
dc.subjectNeural networks ‪(Computer sciences)‬en_US
dc.subjectBack propagation ‪(Artificial intelligence)‬en_US
dc.subjectการเรียนรู้ของเครื่องen_US
dc.subjectเกมคอมพิวเตอร์en_US
dc.subjectนิวรัลเน็ตเวิร์ค (คอมพิวเตอร์)en_US
dc.subjectแบคพรอพาเกชัน (ปัญญาประดิษฐ์)en_US
dc.titleClassifying character's action in role-playing game simulation using resilient backpropagation neural networken_US
dc.title.alternativeการจำแนกการกระทำของตัวละครในโปรแกรมจำลองเกมเล่นตามบทบาท โดยใช้โครงข่ายประสาทแบบแพร่กระจายย้อนกลับที่คืนสภาพได้en_US
dc.typeThesisen_US
dc.degree.nameMaster of Scienceen_US
dc.degree.levelMaster's Degreeen_US
dc.degree.disciplineComputer Science and Information Technologyen_US
dc.degree.grantorChulalongkorn Universityen_US
dc.email.advisorsaranya.m@chula.ac.th-
dc.email.advisorsuphakant.p@chula.ac.th-
dc.identifier.DOI10.14457/CU.the.2012.507-
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
piyachai_ea.pdf1.31 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.