Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/5476
Title: | การเพิ่มประสิทธิภาพการผสมในห้องที่มีการระบายอากาศโดยการปรับเปลี่ยนทางออกของช่องปล่อยอากาศ |
Other Titles: | Mixing enhancement in a ventilated chamber by means of manipulation of a nozzle exit |
Authors: | ทศพล สถิตย์สุวงศ์กุล |
Advisors: | อศิ บุญจิตราดุลย์ |
Other author: | จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์ |
Advisor's Email: | basi@chula.ac.th |
Subjects: | การไหลของอากาศ การระบายอากาศ |
Issue Date: | 2543 |
Publisher: | จุฬาลงกรณ์มหาวิทยาลัย |
Abstract: | งานวิจัยนี้ศึกษาเกี่ยวกับการกระจายตัวของอุณหภูมิภายในห้องที่มีการระบายอากาศ โดยศึกษาผลกระทบของการใช้ Lobed nozzle รูปทรงปิรามิดที่มีความยาวคาบ และระยะห่างระหว่าง Lobe ต่างๆ กัน ควบคู่กับขนาดของช่องระบายอากาศออกด้านท้ายห้อง รวมทั้งผลกระทบของความเร็วอากาศเข้าควบคู่กับขนาดของช่องระบายอากาศออกด้านท้ายห้องสำหรับกรณีที่ไม่ใช้ Lobed nozzle โดยห้องที่ใช้ในการทดลองมีความกว้าง x ยาว x สูง = 50 x 100 x 50 เซนติเมตร(3) มีช่องปล่อยอากาศเข้าและช่องระบายอากาศออกเป็นรูปสี่เหลี่ยมผืนผ้าที่มีความกว้างเท่ากับความกว้างของห้อง ความสูงของช่องปล่อยอากาศเข้า (h) มีค่าเท่ากับ 4 เซนติเมตร ในขณะที่ความสูงของช่องระบายอากาศออกสามารถปรับเปลี่ยนขนาดได้ สำหรับ Lobed nozzle ที่ใช้นั้นแบ่งออกเป็น 2 ชุด ซึ่งมีความยาวคาบของ Lobe เท่ากับ 2h และ 4h ตามลำดับ โดยในแต่ละชุดได้แปรเปลี่ยนระยะห่างระหว่าง Lobe ทั้งหมด 4 ค่าคือ Oh (Lobe วางติดกัน), 1h, 2h และ 4h และให้มีแอมปลิจูดและความลึกของ Lobe คงที่เท่ากับ 2h และ 1h ตามลำดับ การทดลองนี้ทำที่สภาวะซึ่งมีค่าแตกต่างของอุณหภูมิระหว่างอุณหภูมิของอากาศเข้าและอุณหภูมิของสิ่งแวดล้อมประมาณ 40 ํC และมีเรโนลด์นัมเบอร์ซึ่งคำนวณจากความสูงของช่องปล่อยอากาศเข้าที่ความเร็วต่ำและสูงเท่ากับ 1,000 และ 8,800 ตามลำดับ จากผลการทดลองพบว่า Lobed nozzle จะช่วยเพิ่มประสิทธิภาพการผสมและทำให้การกระจายตัวของอุณหภูมิอากาศภายในห้องมีความสม่ำเสมอมากขึ้นกว่ากรณีที่ไม่ใช้ Lobed nozzle โดยเฉพาะในกรณีที่อัตราส่วนพื้นที่การเปิดผนังท้ายห้องน้อย (น้อยกว่า 24%) อย่างไรก็ตาม ในกรณีที่อัตราส่วนพื้นที่การเปิดผนังท้ายห้องมาก Lobed nozzle จะไม่ส่งผลกระทบต่อการกระจายตัวของอุณหภูมิมากนัก ยกเว้นในบริเวณใกล้ทางออกของ Nozzle และจากจำนวน Lobed nozzle ทั้งหมด 2 ชุดที่ทำการศึกษานั้นพบว่า การกระจายตัวของอุณหภูมิอากาศภายในห้องจะขึ้นอยู่กับทั้ง ค่าความยาวคาบ และระยะห่างระหว่าง Lobe ในลักษณะที่ซับซ้อนและควบคู่กันไป โดย Lobed nozzle ชุดคาบ 2h ที่มีระยะห่าง 4h และชุดคาบ 4h ที่มีระยะห่าง 0h จะมีผลทำให้อุณหภูมิเฉลี่ยของห้องเพิ่มขึ้นสูงสุดในแต่ละชุด Lobe นอกจากนั้นเมื่อพิจารณารูปร่างการกระจายตัวของอุณหภูมิโดยละเอียด พบว่า การใช้ Lobed nozzle ทุกแบบจะทำให้รูปร่างการกระจายตัวของอุณหภูมิมีความเต็มรูปลงมาทางด้านล่างของห้องมากขึ้นเมื่อเทียบกับกรณีที่ไม่ใช้ Lobed nozzle สำหรับผลกระทบของความเร็วอากาศเข้าในกรณีที่ไม่ใช้ Lobed nozzle นั้นพบว่า การเปลี่ยนแปลงของอุณหภูมิเฉลี่ยที่บริเวณด้านบนและด้านล่างของห้องตามการเปลี่ยนขนาดของช่องระบายอากาศออกนั้น มีคุณลักษณะที่แตกต่างกัน กล่าวคือ 1) ที่บริเวณด้านบนของห้อง จะมีการเปลี่ยนแปลงของอุณหภูมิเฉลี่ยตามขนาดช่องเปิดด้านท้ายห้อง ในลักษณะที่เหมือนกันทั้งในกรณีความเร็วต่ำและสูง กล่าวคือ 1.1) อุณหภูมิเฉลี่ยจะขึ้นอยู่กับขนาดช่องเปิดด้านท้ายห้องเฉพาะในช่วงการเปิดตั้งแต่กรณีที่เปิดผนังเต็มที่ จนถึงกรณีที่ปิดลงมาไม่เกิน [delta] เมื่อ [delta] คือความหนาของ Wall jet ที่ตำแหน่งท้ายห้องของกรณีที่เปิดผนังเต็มที่ 1.2) แต่หากทำการปิดผนังลงมามากกว่า [delta] แล้ว อุณหภูมิเฉลี่ยที่บริเวณด้านบนของห้องจะมีค่าประมาณคงที่โดยไม่ขึ้นกับขนาดของช่องเปิด ในทางตรงกันข้าม 2) ที่บริเวณด้านล่างของห้องนั้น จะมีการเปลี่ยนแปลงของอุณหภูมิเฉลี่ยตามขนาดของช่องเปิดที่ขึ้นอยู่กับความเร็วอากาศเข้าเป็นอย่างมาก กล่าวคือ 2.1) ในกรณีความเร็วสูงพบว่า การเปลี่ยนแปลงของอุณหภูมิเฉลี่ยที่บริเวณด้านล่างของห้องจะขึ้นอยู่กับขนาดช่องเปิดด้านท้ายห้องในลักษณะเดียวกับที่บริเวณด้านบนของห้อง นั่นคือ อุณหภูมิเฉลี่ยจะขึ้นอยู่กับขนาดของช่องเปิดตั้งแต่กรณีที่เปิดผนังเต็มที่ จนถึงกรณีที่ปิดลงมาไม่เกิน [delta] แต่จะมีค่าประมาณคงที่โดยไม่ขึ้นกับขนาดของช่องเปิด เมื่อทำการปิดผนังลงมามากกว่า [delta] ในขณะที่ 2.2) ในกรณีความเร็วต่ำพบว่า การเปลี่ยนแปลงของอุณหภูมิเฉลี่ยจะมีลักษณะแปรผกผันแบบเชิงเส้นกับขนาดช่องเปิด ในช่วงการเปิด-ปิดช่วงกลางประมาณ 60% ของการเปิดเต็มที่และปิดเต็มที่ ถึงแม้ว่าจะทำการปิดผนังท้ายห้องลงมามากกว่า [delta] แล้วก็ตาม 3) ความแตกต่างของคุณลักษณะการเปลี่ยนแปลงของอุณหภูมิเฉลี่ยตามขนาดของช่องเปิดที่ความเร็วต่างกันนี้ สามารถอธิบายอย่างสังเขปได้ด้วยความแตกต่างของความสามารถในการหักเหเปลี่ยนทิศทางของ Wall jet ที่มีโมเมนตัมสูงและต่ำที่ต่างกัน กล่าวคือ เจ็ทที่มีโมเมนตัมสูงกว่าจะพยายามรักษาทิศทางการเคลื่อนที่เดิมไว้ได้ดีกว่าเจ็ทที่มีโมเมนตัมต่ำกว่า จึงเป็นผลทำให้เกิดการไหลหมุนวนภายในห้อง (Recirculation) ที่มีระดับความรุนแรงทีแตกต่างกัน ดังนี้ จึงได้เสนอให้ใช้ค่าคุณลักษณะเวลา [tau] ซึ่งนิยามเป็นเวลาที่อนุภาคของอากาศต้องใช้ในการเดินทางจากปลายปาก Nozzle ไปยังผนังฝั่งตรงข้ามด้านท้ายห้อง เป็นตัวบ่งชี้ขอบเขตระหว่างความเร็วสูงและต่ำ |
Other Abstract: | Two main issues regarding the distribution of temperature in a ventilated chamber are investigated. Firstly, the effects of pyramid-like lobed nozzles varying in period and gap in combination with the size of end-wall opening are investigated. Secondly, the effects of supply-air velocity also in combination with the size of end-wall opening in the case of nozzle without lobes are investigated. The dimensions of the test chamber are WxLxH = 50x100x50 cm[superscript 3]. The nozzle exit and the end-wall opening are rectangular with the width spanning the whole width of the chamber. The height of the nozzle exit (h) is 4 cm while that of end-wall opening is adjustable. Two series of lobed nozzles are studied : one with the period of 2h, and the other 4h. In each series, the gap between neighboring lobes is varied at 0h (no gap), 1h, 2h, and 4h interval, and the amplitude and the depth of lobes are fixed at 2h and 1h respectively. The experiment is conducted using heated supply air. The temperature difference between that of the supply air and that of ambient air is 40 ํC. The Reynolds numbers based on the height of the nozzle exit and supply-air velocity, at low and high velocities, are 1,000 and 8,800 respectively. The results reveal many interesting characteristics. For the effects of lobed nozzle and the size of end-wall opening, it is found that the lobes help promote mixing and distribution of supply air inside the chamber and, thus, cause the temperature in the chamber to become more uniform, particularly in the lower zones and for cases of small opening (opening ratio less than or 0.24). For cases of large opening, however, the lobes have little effect except near the nozzle exit. The average temperature and the temperature distribution inside the chamber depend on both the period and the gap in complex and coupled manner. In case of the lobed nozzles with 2h period, the 4h gap causes the highest increase in average temperature, while, those of the 4h period, the 0h gap causes the highest increase. Detailed examination reveals that the lobes cause the temperature profiles to become increasingly fuller towards the lower zones as the flow develops downstream in comparison with those of the case of nozzle without lobes. For the effects of supply-air velocity in the case of nozzle without lobes, it is found that the variations in average temperature with the end-wall opening in the upper and lower zones display different characteristics. Namely, 1) inthe upper zones, the variation in average temperature with end-wall opening is relatively independent of the supply-air velocity. Specifically, 1.1) the average temperature depends upon the closing only in the range of closing from 0 (full opening) to triangle, where triangle is the wall jet thickness at the far end of the chamber determined from the case of full opening. On the contrary, 1.2) in the range of closing beyond triangle, the average temperature in the upper zones is approximately constant, independent of the closing. In contrast, 2) in the lower zones, the variation in average temperature with end-wall opening strongly depends upon the supply-air velocity. Namely, 2.1) in the case of high velocity, the average temperature varies withthe end-wall opening in basically the same manner as that is found in the upper zones. That is, it varies with the closing only in the range of closing from 0 to triangle but is approximately constant, in dependent of the closing, beyond the closing of triangle. In striking contrast, 2.2) in the case of low velocity, the average temperature exhibits linear dependency on the closing throughout the mid 60% range of closing, even when the closing is beyond triangle. 3) The difference in the characteristics of variation of average temperature with end-wall opening at different velocities is attributed to the difference in degree in which the direction of high- and low-momentum wall jets can be changed ; high momentum jet is less likely to change its direction than low momentum one. As a result, wall jets of different strength in momentum cause recirculations of different strength. Finally, a time scale tau, defined as the lapse time required for the jet to travel from the nozzle to the far end wall, is suggested to be used for the correlation of these results. |
Description: | วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2543 |
Degree Name: | วิศวกรรมศาสตรมหาบัณฑิต |
Degree Level: | ปริญญาโท |
Degree Discipline: | วิศวกรรมเครื่องกล |
URI: | http://cuir.car.chula.ac.th/handle/123456789/5476 |
ISBN: | 9741300301 |
Type: | Thesis |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Tosapole.pdf | 5.03 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.