Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/63753
Title: Stability enhancement of all-trans retinyl acetate through Nanoencapsulation
Other Titles: การเพิ่มความเสถียรภาพของออล-ทรานส์เรทินิลแอซีเทตด้วยนาโนเอ็นแคปซูเลชั
Authors: Sunatda Arayachukeat
Advisors: Supason Wanichwecharungruang
Other author: Chulalongkorn University. Faculty of Science
Advisor's Email: Supason.P@Chula.ac.th
Subjects: Nanoencapsulation
นาโนเอนแคปซูเลชัน
Issue Date: 2009
Publisher: Chulalongkorn University
Abstract: In this work, encapsulation of all-trans retinyl acetate was investigated using appropriate polymer. The result showed that ATRA-encapsulated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC) nanoparticles gave the particle size of 113.2 ± 27.1 nm. The encapsulation efficiency was 77.9 ± 2.5% at ATRA loading of 21.06 ± 0.1%. The stability study under light-proof condition and when exposed to 45.9 J/cm2 of UVA radiation indicated ~40% and ~36% higher stability of the encapsulated ATRA over free ATRA, respectively. Penetration study with Franz diffusion cell revealed that the encapsulated particles could not transdermally penetrate across the baby mouse skin. Further investigation using confocal fluorescent laser scanning microscope indicated that hair follicle was the skin penetrating route of the particles. In addition, the accumulated particles at the hair follicles released ATRA out into the surrounding tissue.
Other Abstract: In this work, encapsulation of all-trans retinyl acetate was investigated using appropriate polymer. The result showed that ATRA-encapsulated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC) nanoparticles gave the particle size of 113.2 ± 27.1 nm. The encapsulation efficiency was 77.9 ± 2.5% at ATRA loading of 21.06 ± 0.1%. The stability study under light-proof condition and when exposed to 45.9 J/cm2 of UVA radiation indicated ~40% and ~36% higher stability of the encapsulated ATRA over free ATRA, respectively. Penetration study with Franz diffusion cell revealed that the encapsulated particles could not transdermally penetrate across the baby mouse skin. Further investigation using confocal fluorescent laser scanning microscope indicated that hair follicle was the skin penetrating route of the particles. In addition, the accumulated particles at the hair follicles released ATRA out into the surrounding tissue.
Description: Thesis (M.Sc)--Chulalongkorn University, 2009
Degree Name: Master of Science
Degree Level: Master's Degree
Degree Discipline: Petrochemistry and Polymer Science
URI: http://cuir.car.chula.ac.th/handle/123456789/63753
Type: Thesis
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
Sunatda Arayachukeat.pdf1.34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.