Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/77147
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorProadpran Punyabukkana-
dc.contributor.advisorEkapol Chuangsuwanich-
dc.contributor.authorJirut Polohakul-
dc.contributor.otherChulalongkorn University. Faculty of Engineering-
dc.date.accessioned2021-09-22T23:32:12Z-
dc.date.available2021-09-22T23:32:12Z-
dc.date.issued2020-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/77147-
dc.descriptionThesis (M.Eng.)--Chulalongkorn University, 2020-
dc.description.abstractThe item cold-start problem occurs when a recommendation system cannot recommend new items owing to record deficiencies and new listing omissions. When searching for real estate, users can register a concurrent interest in recent and prior projects. Thus, an approach to recommend cold-start and warm-start items simultaneously must be determined. Furthermore, unrequired membership and stop-by behavior cause real estate recommendations to have many cold-start and new users. This characteristic encourages the use of a content-based approach and a session-based recommendation system. Herein, we propose a real estate recommendation approach for solving the item cold-start problem with acceptable warm-start item recommendations in the many-cold-start-users scenario. We modify a session-based recommendation system and employ existing mechanisms to efficiently deal with sequential and context information for the next-interacted item's encoded attribute prediction. Subsequently, we use the nearest-neighbors approach using weighted cosine similarity to determine conforming candidates. We use Recall@K and MRR@K with the top-n recommendation to evaluate warm-start and cold-start item recommendations among different applied mechanisms and against the baselines. The results demonstrate the effectiveness of efficiently integrating the information and the difficulty in performing well in warm-start and cold-start item recommendations simultaneously. Our proposed approach illustrates the capability of solving the item cold-start problem while yielding promising results in both recommendations although neither result is the best. We believe that our approach provides a suitable compromise between both recommendations and that it will benefit recommendation tasks focusing on both recommendations.-
dc.description.abstractalternativeปัญหาโคลด์สตาร์ตมักเกิดขึ้นเมื่อระบบแนะนำไม่สามารถแนะนำรายการใหม่เมื่อขาดข้อมูลหรือเมื่อไม่ได้พิจารณาข้อมูลของรายการใหม่ ๆ สำหรับการค้นหาอสังหาริมทรัพย์นั้น ผู้ใช้สามารถสนใจทั้งที่อยู่อาศัยใหม่และเก่าในเวลาพร้อม ๆ กัน ดังนั้นจึงต้องมีระบบแนะนำที่สามารถแนะนำทั้งรายการเก่าและรายการใหม่ไปด้วยกัน นอกจากนี้การที่ผู้ใช้งานไม่จำเป็นต้องเป็นสมาชิกและพฤติกรรมการใช้งานแบบไม่สม่ำเสมอทำให้การแนะนำอสังหาริมทรัพย์มีผู้ใช้ที่มีข้อมูลการใช้งานน้อยและผู้ใช้ใหม่เป็นจำนวนมาก ลักษณะดังกล่าวจึงสอดคล้องกับการใช้แนวทางการแนะนำที่อิงตามเนื้อหาและระบบแนะนำแบบเซสชัน ในงานวิจัยนี้จึงเสนอแนวทางการแนะนำอสังหาริมทรัพย์สำหรับการแก้ปัญหาโคลด์สตาร์ตของสินค้าที่มีประสิทธิภาพของการแนะนำรายการเก่าที่สามารถยอมรับได้สำหรับสถานการณ์ที่มีผู้ใช้ที่มีข้อมูลการใช้งานน้อยและผู้ใช้ใหม่เป็นจำนวนมาก เราดัดแปลงระบบแนะนำแบบเซสชันและใช้กลไกที่มีอยู่เพื่อจัดการกับข้อมูลลำดับและข้อมูลบริบทอย่างมีประสิทธิภาพสำหรับการคาดการณ์คุณลักษณะที่ถูกเข้ารหัสของอสังหาริมทรัพย์ถัดไปที่ผู้ใช้น่าจะสนใจ จากนั้นจึงหาที่อยู่อาศัยที่สอดคล้องกับคุณลักษณะดังกล่าวโดยใช้วิธีเพื่อนบ้านที่ใกล้ที่สุดร่วมกับความคล้ายคลึงกันของโคไซน์แบบถ่วงน้ำหนัก เราประเมินประสิทธิภาพของการแนะนำรายการเก่าและการแนะนำรายการใหม่ทั้งระหว่างการใช้กลไกที่แตกต่างกันในแนวทางที่นำเสนอและเปรียบเทียบแนวทางที่นำเสนอกับวิธีบรรทัดฐานต่าง ๆ โดยใช้ Recall @ K และ Mean Reciprocal Rank @ K (MRR @ K) คู่กับการวัดผลแบบการแนะนำรายการยอดนิยม ผลลัพธ์ของการประเมินแสดงให้เห็นถึงประสิทธิผลของการนำเข้าข้อมูลลำดับและข้อมูลบริบทอย่างมีประสิทธิภาพและความท้าทายในการแนะนำทั้งรายการเก่าและใหม่ได้ดีในเวลาเดียวกัน แนวทางที่นำเสนอสามารถแนะนำได้เป็นอันดับ 4 และ 2 ในแง่ของการวัดผลด้วย Recall @ 20 เมื่อแนะนำรายการเก่าและรายการใหม่ตามลำดับ ผลลัพธ์นี้แสดงให้เห็นถึงความสามารถในการแก้ปัญหาการโคลด์สตาร์ตของสินค้าแม้ว่าจะไม่ใช่ผลลัพธ์ที่ดีที่สุดทั้งในการแนะนำรายการเก่าและใหม่ก็ตาม ในท้ายที่สุดนี้แนวทางที่นำเสนอเป็นการแนะนำที่เหมาะสมระหว่างการแนะนำรายการเก่าและใหม่และแนวทางนี้จะเป็นประโยชน์ต่องานที่ต้องการแนะนำรายการเก่าและใหม่ในเวลาเดียวกัน-
dc.language.isoen-
dc.publisherChulalongkorn University-
dc.relation.urihttp://doi.org/10.58837/CHULA.THE.2020.131-
dc.rightsChulalongkorn University-
dc.subjectReal property-
dc.subjectAdvertising -- Real property-
dc.subjectอสังหาริมทรัพย์-
dc.subjectโฆษณา -- อสังหาริมทรัพย์-
dc.subject.classificationComputer Science-
dc.titleDeep sequential real estate recommendation approach for solving item cold start problem-
dc.title.alternativeแนวทางการแนะนำอสังหาริมทรัพย์ตามลำดับเชิงลึกเพื่อแก้ปัญหาโคลด์สตาร์ตของสินค้า-
dc.typeThesis-
dc.degree.nameMaster of Engineering-
dc.degree.levelMaster's Degree-
dc.degree.disciplineComputer Engineering-
dc.degree.grantorChulalongkorn University-
dc.identifier.DOI10.58837/CHULA.THE.2020.131-
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
6170124421.pdf1.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.