Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/77234
Title: การประเมินการจัดสรรโทเคนสำหรับการประมูลวิชาด้วยการเรียนรู้ของเครื่อง
Other Titles: Token allocation for courses bidding with machine learning method
Authors: ชนบดี จุฑามณี
Advisors: ประภาส จงสถิตย์วัฒนา
เกริก ภิรมย์โสภา
Other author: จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
Issue Date: 2563
Publisher: จุฬาลงกรณ์มหาวิทยาลัย
Abstract: ทฤษฎีการประมูลเป็นหนึ่งในศาสตร์ที่แพร่หลายนิยมไปในหลากหลายอุตสาหกรรมและภาคส่วนต่าง ๆ ทั้งภาคเอกชน ภาครัฐบาล และภาคการศึกษา เพื่อการจัดการทรัพยากรที่มีอยู่อย่างจำกัดให้เกิดประสิทธิภาพสูงสุด ดังเช่นภาควิชาวิศวกรรมคอมพิวเตอร์ จุฬาลงกรณ์มหาวิทยาลัยได้นำเอาทฤษฎีดังกล่าวมาบริหารจัดการปัญหาการลงทะเบียนของนิสิตนักศึกษา โดยใช้การประมูลทดแทนการวิธีการลงทะเบียนแบบเดิม นิสิตนักศึกษาจะได้เงินจำลองในปริมาณที่จำกัดจำนวนหนึ่งสำหรับใช้ตลอดการศึกษา ซึ่งหากใครมีความต้องการเรียนในรายวิชานั้นมากก็จำเป็นจะต้องใช้เงินจำลองจำนวนมากกว่าปกติเป็นต้น อย่างไรก็ตามหากใช้เงินจำลองไปในปริมาณมากเกินความจำเป็นอาจก่อให้เกิดความสูญเสียโอกาสในการประมูลรายวิชาที่สำคัญอื่น ๆ  การวิจัยชิ้นนี้ จึงทดสอบการประเมินการจัดสรรโทเคนสำหรับการประมูลวิชาด้วยการเรียนรู้ของเครื่อง จำนวน 3 วิธี ได้แก่ ต้นไม้ตัดสินใจ แรนดอมฟอร์เรส และโครงข่ายประสาทเทียม เพื่อเป็นเครื่องมือในการกำหนดกลยุทธ์ หรือ วางแผนการเรียนให้เกิดประสิทธิภาพและเกิดประโยชน์ต่อผู้ใช้งานสูงสุด และผลการวิจัยพบว่า แรมดอมฟอร์เรสเป็นวิธีที่มีประสิทธิภาพมากที่สุดในการนำไปใช้ทำนายค่าโทเคนเพื่อนำไปใช้ในการประมูลวิชาต่อไป
Other Abstract: Auction theory is spread to many industries as the private sector, government, and educational sector to manage resource efficiency. The computer engineering department, Chulalongkorn university, adopt the auction theory to allocate course seats to students instead of an old registration system. At the start, every student is given a limited token throughout the semester. Those who need any courses much more than another one then pay more, However paying overprice could be lost a chance to bid other necessary courses. This research explores token allocation for course bidding with three different machine learning methods, Decision Tree, Random Forest, Artificial Neural Network, for being a tool to plan a course registration strategy. The result shows that Random Forest is the best performance for predict token price for the course bidding system.
Description: วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2563
Degree Name: วิทยาศาสตรมหาบัณฑิต
Degree Level: ปริญญาโท
Degree Discipline: วิทยาศาสตร์คอมพิวเตอร์
URI: http://cuir.car.chula.ac.th/handle/123456789/77234
URI: http://doi.org/10.58837/CHULA.THE.2020.1028
metadata.dc.identifier.DOI: 10.58837/CHULA.THE.2020.1028
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
6270047421.pdf3.18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.