Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/77272
Title: การจำแนกรูปภาพเชิงความหมายของภาพติ่งเนื้อชนิดเซลล์แบ่งตัวแบบผิดปกติในกระเพาะอาหารตามเวลาจริงโดยใช้กระบวนการการเรียนรู้เชิงลึก
Other Titles: Real-time gastric intestinal metaplasia semantic segmentation using deep learning approach
Authors: วิชยะ ศิริพบพร
Advisors: พีรพล เวทีกูล
Other author: จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
Issue Date: 2563
Publisher: จุฬาลงกรณ์มหาวิทยาลัย
Abstract: ติ่งเนื้อชนิดเซลล์แบ่งตัวแบบผิดปกติในกระเพาะอาหารจัดอยู่ในประเภทรอยโรคชนิดหนึ่ง เนื่องจากรอยโรคชนิดนี้ตรวจพบได้ยาก ทำให้บ่อยครั้งทีมแพทย์มักจะตรวจไม่พบ และมีโอกาสสูงที่จะพัฒนากลายเป็นมะเร็งกระเพาะอาหาร ในปัจจุบัน กระบวนการการเรียนรู้เชิงลึกนั้น ไม่สามารถตรวจจับบริเวณที่เป็นตามเวลาจริงได้ ทำให้งานวิจัยส่วนใหญ่จะตรวจหลังจากทำหัถการ ทางผู้จัดทำ จึงเสนอแนวทางในการทำโมเดลใหม่ โดยเน้นไปที่การใช้งานตามเวลาจริง โดยนำภาพถ่ายรอยโรคความละเอียดสูง 802 ภาพ จากศูนย์ส่องกล้องโรงพยาบาลจุฬาลงกรณ์ มาทำการปรับปรุงโมเดล BiSeNet จากงานแข่งขัน โดยเพิ่มเทคนิคเพื่อช่วยเพิ่มความแม่นยำของโมเดล โดยการใช้การเรียนรู้แบบโอนถ่ายจากภาพการส่องกล้องทางเดินอาหารส่วนล่าง ใช้การปรับภาพแคลชเพื่อช่วยเพิ่มรายละเอียดของภาพ และใช้การเพิ่มข้อมูลเพื่อให้โมเดลมีความแม่นยำโดยที่มีภาพจำนวนน้อย โดยโมเดลที่ถูกปรับปรุงของผู้จัดทำนั้น สามารถรองรับการใช้งานจริงได้ โดยมีการประมวลผลอยู่ที่ 31.53 เฟรมต่อวินาจึงสาที และสามารถทำนายภาพที่มีรอยโรคได้แม่นยำถึงร้อยละ 93 ดั้งนั้น โมเดลของผู้จัดทำ จึงสามารถใช้งานได้ระหว่างการทำหัตถการ และสามารถทำนายรอยโรคได้แม่นยำใกล้เคียงกับโมเดลยอดนิยม ในตลาดปัจจุบัน
Other Abstract: Gastric intestinal metaplasia (GIM) is a premalignant lesion that is difficult to detect and has a high chance to evolve to gastric cancer diseases. Now, deep learning approach failed to detect GIM lesion in real-time due to slow inference speed. Then, most of the paper in GIM is focus on post-surgery. We proposed the new model adapted from real-time competition "BiSeNet" trained by 802 GIM images and its label from Chulalongkorn Hospital. With 3 techniques, transfer learning from lower gastrointestinal tract image, CLAHE pre-processing, and data augmentation, the model can perform real-time environment with 31.53 frames per second and can predict with 93% highest sensitivity. Thus, our BiSeNet model can perform in real-time with high accuracy equivalent to the baseline model in the market.
Description: วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2563
Degree Name: วิทยาศาสตรมหาบัณฑิต
Degree Level: ปริญญาโท
Degree Discipline: วิทยาศาสตร์คอมพิวเตอร์
URI: http://cuir.car.chula.ac.th/handle/123456789/77272
URI: http://doi.org/10.58837/CHULA.THE.2020.1026
metadata.dc.identifier.DOI: 10.58837/CHULA.THE.2020.1026
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
6270261321.pdf3.73 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.