Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/9668
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorYupaporn Kemprasit-
dc.contributor.authorNoknoi Rompurk-
dc.contributor.otherChulalongkorn University. Faculty of Science-
dc.date.accessioned2009-08-05T07:48:58Z-
dc.date.available2009-08-05T07:48:58Z-
dc.date.issued2001-
dc.identifier.isbn9740304753-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/9668-
dc.descriptionThesis (M.Sc.)--Chulalongkorn University, 2001en
dc.description.abstractA semigroup S is said to admit a hyperring structure if there exists a hyperoperation + on S[superscript 0] such that (S[superscript 0], +, .) is a (Krasner) hyperring where . is the operation of S[superscript 0]. For a semigroup S and theta sigma S[superscript 1], let (S, theta) be the semigroup S under the operation * defined by x * y = x-theta-y for all x, y sigma S. The full transformation semigroup on a nonempty set X is denoted by T(X). For a vector space V over a division ring, let L(V) be the semigroup of all linear transformations alpha : V vector V under composition. In this research, we give characterizations determining when the semigroup (S, theta) with theta sigma S[superscript 1] admits a hyperring structure where S is any of the following subsemigroups of T(X) and of L(V) : T(X), M(X) = {alpha sigma T(X) | alpha is 1 - 1}, E(X) = {alpha sigma T(X) | Im-alpha = X} T[subscript 1](X) = {alpha sigma T(X) | Im-alpha is finite}, T[subscript 2](X) = {alpha sigma T(X) | X \ Im-alpha is finite}, T[subscript 3](X) = {alpha sigma T(X) | K(alpha) is finite} where K(alpha) = {x sigma X | alpha is not 1 - 1 at x}, T[subscript 4](X) = {alpha sigma T(X) | alpha is 1 - 1 and X \ Im-alpha is infinite} where X is infinite, T[subscript 5](X) = {alpha sigma T(X) | K(alpha) infinite and Im-alpha = X} where X is infinite, L(V), M(V) = {alpha sigma L(V) | alpha is 1 - 1}, E(V) = {alpha sigma L(V) | Imalpha = V} L[subscript 1](V) = {alpha sigma L(V) | dim Im-alpha is finite}, L[subscript 2](V) = {alpha sigma L(V) | dim (V / Im-alpha) is finite}, L[subscript 3](V) = {alpha sigma L(V) | dim Keralpha is finite} L[subscript 4](V) = {alpha sigma L(V) | alpha is 1 - 1 and dim (V / Im-alpha) is infinite} where V is infinite dimensional, L[subscript 5](V) = {alpha sigma L(V) | dim Ker-alpha is infinite and Im-alpha = V} where V is infinite dimensional.en
dc.description.abstractalternativeเรากล่าวว่าเซมิกรุป S ให้โครงสร้างไฮเปอร์ริง ถ้ามีไฮเปอร์โอเปอเรชัน + บน S[superscript 0] ที่ทำให้ (S[superscript 0], +, .) เป็น (คราสเนอร์) ไฮเปอร์ริง โดยที่ . เป็นโอเปอเรชันของ S[superscript 0] สำหรับเซมิกรุป S และ theta sigma S[superscript 1] ให้ (S, theta) เป็นเซมิกรุป S ภายใต้โอเปอเรชัน * กำหนดโดย x * y = x-theta-y สำหรับทุก x, y sigma S เราให้ T(X) แทนเซมิกรุปการแปลงเต็มบนเซต X ซึ่งเป็นเซตไม่ว่าง สำหรับปริภูมิเวกเตอร์ V บนริงการหารให้ L(V) เป็นเซมิกรุปของการแปลงเชิงเส้น alpha : V vector V ทั้งหมดภายใต้การประกอบ ในการวิจัยนี้เราให้ลักษณะที่จะบอกว่าเซมิกรุป (S, theta) โดย theta sigma S[superscript 1] ให้โครงสร้างไฮเปอร์ริงเมื่อใด โดยที่ S เป็นเซมิกรุปย่อยใดๆ ของ T(X) และ L(V) ต่อไปนี้ T(X) M(X) = {alpha sigma T(X) | alpha หนึ่งต่อหนึ่ง} E(X) = {alpha sigma T(X) | Im-alpha = X} T[subscript 1](X) = {alpha sigma T(X) | Im-alpha เป็นเซตอันตะ} T[subscript 2](X) = {alpha sigma T(X) | X \ Im-alpha เป็นเซตอันตะ} T[subscript 3](X) = {alpha sigma T(X) | K(alpha) เป็นเซตอันตะ} เมื่อ K(alpha) = {x sigma X | alpha ไม่หนึ่งต่อหนึ่งที่ x} T[subscript 4](X) = {alpha sigma T(X) | alpha หนึ่งต่อหนึ่ง และ X \ Im-alpha เป็นเซตอนันต์} เมื่อ X เป็นเซตอนันต์ T[subscript 5](X) = {alpha sigma T(X) | K(alpha) เป็นเซตอนันต์ และ Im-alpha = X} เมื่อ X เป็นเซตอนันต์ L(V) M(V) = {alpha sigma L(V) | alpha หนึ่งต่อหนึ่ง} E(V) = {alpha sigma L(V) | Im-alpha = V} L[subscript 1](V) = {alpha sigma L(V) | dim Im-alpha อันตะ} L[subscript 2](V) = {alpha sigma L(V) | dim (V / Im-alpha) อันตะ} L[subscript 3](V) = {alpha sigma L(V) | dim Keralpha อันตะ} L[subscript 4](V) = {alpha sigma L(V) | alpha หนึ่งต่อหนึ่ง และ dim (V / Im-alpha) อนันต์} เมื่อ V เป็นปริภูมิเวกเตอร์ที่มีมิติอนันต์ L[subscript 5](V) = {alpha sigma L(V) | dim Ker-alpha อนันต์ และ Im-alpha = V} เมื่อ V เป็นปริภูมิเวกเตอร์ที่มีมิติอนันต์en
dc.format.extent1036741 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoenes
dc.publisherChulalongkorn Universityen
dc.rightsChulalongkorn Universityen
dc.subjectSemigroupsen
dc.subjectSemigroup ringsen
dc.titleGeneralized transformation semigroups admitting hyperring structureen
dc.title.alternativeเซมิกรุปแปลงนัยทั่วไปที่ให้โครงสร้างไฮเปอร์ริงen
dc.typeThesises
dc.degree.nameMaster of Sciencees
dc.degree.levelMaster's Degreees
dc.degree.disciplineMathematicses
dc.degree.grantorChulalongkorn Universityen
dc.email.authorYupaporn.K@Chula.ac.th  -
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
Noknoi.pdf1.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.