Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/9874
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorสมชาย จิตะพันธ์กุล-
dc.contributor.advisorสุดาพร ลักษณียนาวิน-
dc.contributor.authorเอกฤทธิ์ มณีน้อย-
dc.contributor.otherจุฬาลงกรณ์มหาวิทยาลัย. บัณฑิตวิทยาลัย-
dc.date.accessioned2009-08-10T08:30:03Z-
dc.date.available2009-08-10T08:30:03Z-
dc.date.issued2541-
dc.identifier.isbn9743314229-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/9874-
dc.descriptionวิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2541en
dc.description.abstractวิทยานิพนธ์นี้มีจุดมุ่งหมายเพื่อพัฒนาระบบรู้จำหน่วยเสียงสระภาษาไทยโดยใช้โครงข่ายประสาทเทียม โครงข่ายประสาทเทียมที่ใช้ในงานวิจัยนี้มีโครงสร้างแบบ MLP ที่มีจำนวนชั้นซ่อนตัวหนึ่งชั้นและใช้ขั้นตอนวิธีการส่งค่าย้อนกลับในการฝึกฝน โครงข่ายประสาทเทียมจะถูกแบ่งออกเป็นโครงข่ายย่อยสำหรับรู้จำหน่วยเสียงสระเดี่ยวจากชุดคำศัพท์ที่ประกอบด้วยเสียงสระเดี่ยวภาษาไทย 9 หน่วยเสียงเพื่อการสร้างต้นแบบหน่วยเสียงที่มีประสิทธิภาพ นอกจากการรู้จำหน่วยเสียงสระเดี่ยวโดยโครงข่ายประสาทเทียมแล้วงานวิจัยนี้ได้สร้างแบบจำลองทางสถิติของช่วงความยาว เสียงสระเพื่อทำการรู้จำสระเสียงสั้น-ยาวกับชุดคำศัพท์ที่ประกอบด้วยสระเสียงสั้นยาวจำนวนน 6 เสียง ค่าลักษณะสำคัญที่ใช้ในงานวิจัยนี้ได้แก่ สัมประสิทธิ์การประมาณพันธะเชิงเส้น สัมประสิทธิ์ cepstral และความถี่ฟอร์แมนท์ ผลการทดสอบอัตราการรู้จำมีค่าร้อยละ 90.34 เมื่อใช้การแบ่งกลุ่มหน่วยเสียงสระตามความถี่ฟอร์แมนท์และใช้ค่าสัมประสิทธิ์ cepstral เป็นค่าลักษณะสำคัญ สูงกว่ากรณีที่ไม่มีการแบ่งกลุ่มหน่วยเสียงสระตามความถี่ฟอร์มแมนท์ที่มีอัตราการรู้จำร้อยละ 85.92 โดยที่ผู้พูดในชุดฝึกฝนมีจำนวน 30 คน และชุดทดสอบแบบไม่ขึ้นกับผู้พูด 20 คนen
dc.description.abstractalternativeThe objective of this research is to develop the Thai vowel-phoneme recognition system using an artificial neural network. The single hidden layer MLP neural network with the backpropagation algorithm, is employed in this research. The artificial neural network is divided into subnetworks for recognizing the 9 vowel phonemes from the vocabulary set. Furthermore, this thesis has also constructed the statistical model for recognizing short and long vowels. The features used in this research are linear prediction coefficient, cepstral coefficient, and formant frequency. The recognition rate of this system is 90.34 percent when the subdivided artificial neural networks correspond to formant frequency and cepstral coefficient. The recognition rate of this subdivided network is higher than the single network of which the recognition rate is 85.92 percent. Thirty training speakers and twenty test speakers are employed in this research.en
dc.format.extent1365308 bytes-
dc.format.extent968129 bytes-
dc.format.extent1903339 bytes-
dc.format.extent1272403 bytes-
dc.format.extent2264039 bytes-
dc.format.extent841951 bytes-
dc.format.extent2203419 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.language.isothes
dc.publisherจุฬาลงกรณ์มหาวิทยาลัยen
dc.rightsจุฬาลงกรณ์มหาวิทยาลัยen
dc.subjectนิวรัลเน็ตเวิร์ค (คอมพิวเตอร์)en
dc.subjectการรู้จำเสียงพูดอัตโนมัติen
dc.subjectภาษาไทย -- สระen
dc.titleการรู้จำหน่วยเสียงสระภาษาไทยโดยใช้โครงข่ายประสาทเทียมen
dc.title.alternativeThai vowel phoneme recognition using artificial neural networksen
dc.typeThesises
dc.degree.nameวิศวกรรมศาสตรมหาบัณฑิตes
dc.degree.levelปริญญาโทes
dc.degree.disciplineวิศวกรรมไฟฟ้าes
dc.degree.grantorจุฬาลงกรณ์มหาวิทยาลัยen
dc.email.advisorSomchai.J@chula.ac.th-
dc.email.advisorSudaporn.L@chula.ac.th-
Appears in Collections:Grad - Theses

Files in This Item:
File Description SizeFormat 
Ekkarit_Ma_front.pdf1.33 MBAdobe PDFView/Open
Ekkarit_Ma_ch1.pdf945.44 kBAdobe PDFView/Open
Ekkarit_Ma_ch2.pdf1.86 MBAdobe PDFView/Open
Ekkarit_Ma_ch3.pdf1.24 MBAdobe PDFView/Open
Ekkarit_Ma_ch4.pdf2.21 MBAdobe PDFView/Open
Ekkarit_Ma_ch5.pdf822.22 kBAdobe PDFView/Open
Ekkarit_Ma_back.pdf2.15 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.