Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/61576
Title: แบบจำลองพลศาสตร์ของไหลเชิงคำนวณสำหรับพลังงานที่ใช้ในถังปั่นกวนที่ขนาดไม่เป็นไปตามมาตรฐาน
Other Titles: Computational fluid dynamic simulation for power consumption in non-standard mixing tank
Authors: อาทร เด่นดี
Advisors: อภินันท์ สุทธิธารธวัช
Other author: จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
Subjects: พลศาสตร์ของไหลเชิงการคำนวณ
Computational fluid dynamics
Issue Date: 2561
Publisher: จุฬาลงกรณ์มหาวิทยาลัย
Abstract: การศึกษาการไหลภายในถังกวนผสมรวมถึงการคำนวณค่า Power Number (Np) ซึ่งเป็นตัวแปรสำคัญในการออกแบบถังกวนผสม สามารถทำได้โดยใช้พลศาสตร์ของไหลเชิงคำนวณซึ่งในงานวิจัยนี้ใช้แบบจำลองความปั่นป่วน SST k-omega ร่วมกับแบบจำลองการหมุน Sliding Mesh โดยค่า Np ในการไหลแบบราบเรียบจะแปรผกผันกับ Reynolds Number (Re) โดย Np = KL/Re แต่ในย่านการไหลแบบปั่นกวนค่า Np จะเป็นค่าคงที่ โดย Np = KT โดยในงานวิจัยนี้แบ่งออกเป็น 2 ส่วนหลักคือ ส่วนที่ 1 เป็นการสอบเทียบความเร็วที่เกิดจากการหมุนของใบปั่นกวนชนิด Rushton Turbine กับผลการทดลองจากเอกสารอ้างอิงและสอบเทียบค่า Np ของใบปั่นกวนชนิด Rushton Turbine, 45° Pitched blade Turbine และ Retreat Curve ที่ติดตั้งกับถังกวนผสมที่ขนาดเป็นไปตามมาตรฐาน โดยผลการสอบเทียบความเร็วนั้นให้แนวโน้มและค่าที่สอดคล้องกับผลการทดลอง นอกจากนี้ค่า Np ที่คำนวณของย่านการไหลแบบราบเรียบและปั่นป่วนนั้นมีร้อยละความแตกต่างกับผลการทดลองไม่เกินร้อยละ 10 รวมไปถึงลักษณะการไหลที่เกิดจากการคำนวณนั้นแสดงให้เห็นถึงลักษณะการไหลเฉพาะที่เกิดจากใบปั่นกวนที่นำมาสอบเทียบ สำหรับส่วนที่ 2 จะเป็นการคำนวณหาค่า Np ในระบบถังกวนผสมที่ขนาดไม่เป็นไปตามมาตรฐาน 2 ชนิด ชนิดที่ 1 เป็นระบบถังปั่นกวนที่ติดตั้งระบบใบปั่นกวนประกอบด้วย ใบปั่นกวนชนิด 45° Pitched blade Disk Turbine 2 ใบที่ส่วนบนและส่วนกลางของถังปั่นกวน และ ใบปั่นกวนชนิด Retreat Curve ที่ด้านล่างของถังปั่นกวน โดยผลการคำนวณค่า KL และ KT ของระบบใบปั่นกวนมีค่าเท่ากับ 251 และ 7.21 นอกจากนี้ยังพบว่าลักษณะการไหลที่เกิดขึ้นเป็นลักษณะการไหลในแนวดิ่งที่เกิดจากการเสริมกันของใบปั่นกวนทั้ง 3 ใบ ชนิดที่ 2 เป็นระบบถังปั่นกวนที่อ้างอิงจากถังหมักที่ติดตั้งใบปั่นกวนชนิด Rushton Turbine 2 ใบ รวมถึงเครื่องมือวัด เช่น เครื่องมือวัดการละลายของออกซิเจนในถังหมัก เป็นต้น โดยถูกนำมาวิเคราะห์การไหลและค่า Np โดย KL และ KT ของระบบใบปั่นกวนมีค่าเท่ากับ 192 และ 10.52 ค่า ซึ่งค่า Np ในย่านการไหลแบบปั่นป่วนนั้นมีค่าเป็น 2 เท่าของการติดตั้งใบปั่นกวนชนิด Rushton Turbine เพียง 1 ใบ ซึ่งเกิดจากการจัดเรียงระยะห่างระหว่างใบปั่นกวนทั้งสองและระยะห่างระหว่างใบปั่นกวนใบล่างกันถังปั่นกวนที่ทำให้เกิดการไหลแบบขนานซึ่งแสดงให้เห็นถึงการทำงานที่ขนานกันของใบปั่นกวนทั้ง 2 ใบ โดยการปรับลดระยะห่างระหว่างใบปั่นกวนใบล่างกับฐานของถังปั่นกวนนั้นทำให้เกิดการไหลแบบแยกออก ซึ่งทำให้ค่า Np นั้นลดลงและมีค่าเท่ากับ 8.61 และการเพิ่มระยะห่างดังกล่าวทำให้เกิดการไหลแบบรวมและมีค่า Np ที่ต่ำที่สุดและมีค่าเท่ากับ 7.88 แต่ค่า Np นั้นไม่ได้บ่งบอกถึงการกระจายตัวของความเร็วในถังปั่นกวน โดยการไหลแบบแยกออกนั้นให้การกระจายตัวของความเร็วที่ดีที่สุดเมื่อพิจารณากราฟระหว่างความเร็วกับร้อยละอัตราส่วนโดยปริมาตรของของไหล
Other Abstract: The study of flow pattern in a mixing tank and Power Number (Np) which is an important parameter for scale-up can be achieved by applying computational fluid dynamics technique. In this study, SST k-omega was used as a turbulent model. A sliding mesh technique was used as an impeller approach for simulating flow which was generated by the rotation of the impeller. The Np in laminar flow regime inversely varied with Reynolds Number (Re), which Np equal to KL/Re. However, in the turbulent flow regime, the Np is constant which Np equal to KT. This work was divided into two parts. Part 1 is a validation of velocity in axial, radial and tangential which generated by Rushton turbine then compared to experimental data from the literature. The   Np of standard mixing tank equipped with Rushton Turbine, 45° pitched blade turbine and retreat curve impeller were also validated with literature results. The Np in laminar and turbulent flow regime compare to experimental data from literature less than 10%. The computational results also reported the characteristic flow of the selected impeller. Part 2 is Np calculation for non-standard mixing tank equipped two types of the impeller. The first one is the impeller system including three impellers which are 45° Pitched blade disk Turbine at top and middle of the tank also retreat curve impeller at the bottom tank. The computational results of KL and KT were 251 and 7.21, respectively. The flow pattern shown the axial flow generated from the flow enhancement by the three impellers. The second is the fermenter which is the mixing tank equipped dual Rushton turbine and internal oxygen and pH detector probe.  The computational results of KL and KT were 192 and 10.52, respectively. The Np in the turbulent flow regime is twice as much comparing with using only a single Rushton turbine. This was due to the adjustment of the impeller spacing and the impeller clearance which caused the parallel flow. The parallel flow pattern showed that the dual impeller worked parallelly. Reducing impeller clearance from based case cause diverging flow and the Np was 8.61 and increasing impeller clearance cause merging which yields the lowest Np and equal to 7.88. However, the value of Np did not affect the distribution of the velocity in the mixing tank. The diverging flow showed the best velocity distribution compared to the others by considering the graph between velocity and liquid volume fraction.
Description: วิทยานิพนธ์ (วศ.ด.)--จุฬาลงกรณ์มหาวิทยาลัย, 2561
Degree Name: วิศวกรรมศาสตรมหาบัณฑิต
Degree Level: ปริญญาโท
Degree Discipline: วิศวกรรมเคมี
URI: http://cuir.car.chula.ac.th/handle/123456789/61576
URI: http://doi.org/10.58837/CHULA.THE.2018.1188
metadata.dc.identifier.DOI: 10.58837/CHULA.THE.2018.1188
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
5970360621.pdf12.68 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.