DSpace Repository

การเปรียบเทียบวิธีการประมาณค่าแบบช่วงสำหรับพารามิเตอร์ของการแจกแจงทวินามลบ

Show simple item record

dc.contributor.advisor มานพ วราภักดิ์
dc.contributor.author สิรีธร น้อยเจริญ
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2010-09-13T07:00:21Z
dc.date.available 2010-09-13T07:00:21Z
dc.date.issued 2549
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/13464
dc.description วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2549 en
dc.description.abstract เปรียบเทียบวิธีการประมาณค่าแบบช่วงสำหรับค่าสัดส่วนของประชากร ที่มีการแจกแจงแบบทวินามลบ โดยเปรียบเทียบวิธีวิลค์ วิธีการทั่วไป และวิธีเบส์ (กำหนดการแจกแจง pior เป็นแบบเบ้ซ้าย โดยที่ lambda มีค่า 1 และ beta มีค่า 0.5) เกณฑ์ที่ใช้ในการพิจารณา แบ่งเป็น 2 ขั้นตอนคือ ขั้นแรกจะพิจารณาค่าสัมประสิทธิ์เชื่อมั่นจากการทดลองที่ได้จากแต่ละวิธี มีค่าไม่ต่ำกว่าที่กำหนด ขั้นต่อไปจะทำการเปรียบเทียบค่าความยาวเฉลี่ยของช่วงความเชื่อมั่น ถ้าวิธีใดให้ค่าความยาวเฉลี่ยต่ำที่สุด จะถือว่าวิธีนั้นดีที่สุดในแต่ละสถานการณ์ การวิจัยครั้งนี้ได้กำหนดขนาดตัวอย่าง (n) มีค่า 5 ถึง 40 ค่าพารามิเตอร์ (p) มีค่า 0.01 (0.01) 0.09 และ 0.10 (0.10) 0.90 จำนวนครั้งที่สำเร็จ (r) มีค่าเท่ากับ 1 และ 2 และค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนดมีค่า 0.90, 0.95 และ 0.99 ข้อมูลที่ใช้ได้จากการจำลองซึ่งกระทำซ้ำ 1,000 ครั้ง ในแต่ละสถานการณ์ กรณี r = 1 สำหรับ ค่า p ที่มีค่าสูง (เข้าใกล้ 1) ทุกค่าสัมประสิทธิ์ความเชื่อมั่น และทุกขนาดตัวอย่าง พบว่า วิธีเบส์จะให้ค่าสัมประสิทธิ์ความเชื่อมั่นจากการทดลองไม่ต่ำกว่า ค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด และให้ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นต่ำที่สุด สำหรับ ค่า p ที่มีค่าปานกลาง ทุกค่าสัมประสิทธิ์ความเชื่อมั่น และทุกขนาดตัวอย่าง พบว่า วิธีวิลค์จะให้ค่าสัมประสิทธิ์ความเชื่อมั่นจากการทดลองไม่ต่ำกว่า ค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด และให้ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นต่ำที่สุด สำหรับ ค่า p ที่มีค่าต่ำ (เข้าใกล้ 0) ทุกค่าสัมประสิทธิ์ความเชื่อมั่น และทุกขนาดตัวอย่าง พบว่า วิธีการทั่วไปจะให้ค่าสัมประสิทธิ์ความเชื่อมั่นจากการทดลอง ไม่ต่ำกว่าค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด และให้ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นต่ำที่สุด กรณี r = 2 สำหรับ ค่า p ที่มีค่าสูง (เข้าใกล้ 1) ทุกค่าสัมประสิทธิ์ความเชื่อมั่น และเมื่อขนาดตัวอย่าง 11 <= n <= 40 พบว่า วิธีเบส์จะให้ค่าสัมประสิทธิ์ความเชื่อมั่นจากการทดลองไม่ต่ำกว่าค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด และให้ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นต่ำที่สุด สำหรับ ค่า p ที่มีค่าปานกลาง ทุกค่าสัมประสิทธิ์ความเชื่อมั่น และทุกขนาดตัวอย่าง พบว่า วิธีวิลค์จะให้ค่าสัมประสิทธิ์ความเชื่อมั่นจากการทดลอง ไม่ต่ำกว่าค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด และให้ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นต่ำที่สุด สำหรับ ค่า p ที่มีค่าต่ำ (เข้าใกล้ 0) ทุกค่าสัมประสิทธิ์ความเชื่อมั่น และทุกขนาดตัวอย่าง พบว่า วิธีการทั่วไปจะให้ค่าสัมประสิทธิ์ความเชื่อมั่นจากการทดลอง ไม่ต่ำกว่าค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด และให้ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นต่ำที่สุด ปัจจัยที่มีผลต่อค่าความยาวเฉลี่ยของช่วงความเชื่อมั่น ของทุกวิธีการประมาณค่าแบบช่วงได้แก่ ค่าสัมประสิทธิ์ความเชื่อมั่น และขนาดตัวอย่าง โดยที่ค่าความยาวเฉลี่ยของช่วงความเชื่อมั่นจะแปรผันตามค่าสัมประสิทธิ์ความเชื่อมั่นที่กำหนด (alpha) แต่จะแปรผกผันกับขนาดตัวอย่าง en
dc.description.abstractalternative To compare the interval estimation methods for proportion of negative binomial distribution. The interval estimation methods are Wilk’s Method, General Method, and Baysian Method ( pior distribution is negative skewness, lambda =1 and beta =0.5 ). The research has two steps. First, the confidence coefficient of interval methods must not be lower than the determined confidence coefficient values. The second is the comparison of mean of confidence interval lengths. The method having shortest mean of confidence interval length is considered to be the best. This research was done by using sample size (n) equals 5 to 40, parameter (p) equals 0.01 (0.01) 0.09 and 0.10(0.10) 0.90 and parameter (r) equals 1 and 2, all of which are considered at confidence coefficients 0.90, 0.95 and 0.99. The study used the Monte Carlo simulation method. The experiment was repeated 1,000 times under each situation. In case of r = 1 For large values of p (p approach to 1), all sample sizes and all confidence coefficients, the confidence coefficient of Baysian Method is not lower than the given confidence coefficients and the average confidence interval lengths of Baysian Method is shortest. For moderate values of p, all sample sizes and all confidence coefficients, the confidence coefficient of Wilks’ Method is not lower than the given confidence coefficients and the average confidence interval lengths of Wilks’ Method is shortest. For small values of p (p approach to 0), all sample sizes and all confidence coefficients, the confidence coefficient of General Method is not lower than the given confidence coefficients and the average confidence interval lengths of General Method is shortest. In case of r = 2 For large values of p (p approach to 1), 11 <= n <= 40 and all confidence coefficients, the confidence coefficient of Baysian Method is not lower than the given confidence coefficients and the average confidence interval lengths of Baysian Method is shortest. For moderate values of p, all sample sizes and all confidence coefficients, the confidence coefficient of Wilks’ Method is not lower than the given confidence coefficients and the average confidence interval lengths of Wilks’ Method is shortest. For small values of p (p approach to 0), all sample sizes and all confidence coefficients, the confidence coefficient of General Method is not lower than the given confidence coefficients and the average confidence interval lengths of General Method is shortest. The factors that affected the average of confidence interval length of all interval estimation methods are confidence coefficient and sample size (n). The average of confidence interval length varies directly with confidence coefficient (alpha) but the average of confidence interval length varies indirectly with sample size. en
dc.format.extent 1540803 bytes
dc.format.mimetype application/pdf
dc.language.iso th es
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en
dc.relation.uri http://doi.org/10.14457/CU.the.2006.517
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en
dc.subject การประมาณค่าพารามิเตอร์ en
dc.subject การแจกแจงทวินามลบ en
dc.title การเปรียบเทียบวิธีการประมาณค่าแบบช่วงสำหรับพารามิเตอร์ของการแจกแจงทวินามลบ en
dc.title.alternative A comparison on interval estimation methods for a negative binomial parameter en
dc.type Thesis es
dc.degree.name สถิติศาสตรมหาบัณฑิต es
dc.degree.level ปริญญาโท es
dc.degree.discipline สถิติ es
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en
dc.email.advisor Manop.V@Chula.ac.th
dc.identifier.DOI 10.14457/CU.the.2006.517


Files in this item

This item appears in the following Collection(s)

Show simple item record