DSpace Repository

การเปรียบเทียบการวิเคราะห์ข้อมูลระหว่างการวิเคราะห์ข้อมูลจำแนกประเภท และการวิเคราะห์การถดถอยมัลติโนเมียลโลจิสติค สำหรับข้อมูลระยะยาว

Show simple item record

dc.contributor.advisor สุพล ดุรงค์วัฒนา
dc.contributor.author ศุภรัตน์ ดิษบรรจง
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2011-07-10T07:41:10Z
dc.date.available 2011-07-10T07:41:10Z
dc.date.issued 2552
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/15471
dc.description วิทยานิพนธ์ (สต.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2552 en
dc.description.abstract เปรียบเทียบวิธีการวิเคราะห์ข้อมูลที่มีลักษณะของตัวแปรตามเป็นแบบพหุสำหรับข้อมูลระยะยาว วิธีการที่ใช้ในการวิเคราะห์มี 2 วิธี ได้แก่ การวิเคราะห์จำแนกประเภทแบบพหุ (multiple discriminant method: MDA) ซึ่งใช้หลักของเบส์ในการจำแนกกลุ่ม และวิธีการวิเคราะห์การถดถอย มัลติโนเมียลโลจิสติค (multiple logistic regression method: MLR) ซึ่งใช้สมการประมาณค่าโดยนัยทั่วไป (generalized estimating equation: GEE) ในการจำแนกกลุ่มข้อมูลที่นำมาวิเคราะห์ประกอบด้วยตัวแปรอิสระและตัวแปรตาม ซึ่งตัวแปรตามเป็นตัวแปรเชิงคุณภาพ ที่มีจำนวนกลุ่มมากกว่า 2 กลุ่ม และตัวแปรอิสระประกอบด้วยตัวแปรเชิงปริมาณและตัวแปรเชิงคุณภาพ โดยการวิจัยครั้งนี้ใช้ข้อมูลจริงทางด้านการแพทย์จำนวน 3 ชุด สำหรับการวิเคราะห์ทั้ง 2 วิธี (การติดตามผลโรคนอนไม่หลับ การผ่าตัดเปลี่ยนผิวข้อสะโพก และการรักษาอาการเอ็นร้อยหวายฉีก ตามลำดับ) เกณฑ์ที่ใช้ในการตัดสินใจคือ การวัดค่าความถูกต้องในการจัดกลุ่ม ผลการวิเคราะห์ข้อมูล สรุปได้ดังนี้ ข้อมูลชุดที่ 1 เมื่อกำหนดให้โครงสร้างของความแปรปรวนและความแปรปรวนร่วมมีลักษณะเป็นแบบยูนิฟอร์ม โดยใช้ฟังก์ชันสำเร็จรูป ORDGEE พบว่า วิธีการของ MLR มีค่าความถูกต้องในการจัดกลุ่มสูงสุดข้อมูลชุดที่ 2 เมื่อกำหนดให้โครงสร้างของความแปรปรวนและความแปรปรวนร่วม มีลักษณะเป็นแบบอิสระและยูนิฟอร์ม โดยใช้ฟังก์ชันสำเร็จรูป REPOLR พบว่า ทั้ง 2 วิธีการวิเคราะห์ มีค่าค่าความถูกต้องในการจัดกลุ่มเท่ากัน ข้อมูลชุดที่ 3 เมื่อกำหนดให้โครงสร้างของความแปรปรวนและความแปรปรวนร่วมมีลักษณะเป็นแบบอิสระและยูนิฟอร์ม โดยใช้ฟังก์ชันสำเร็จรูป REPOLR พบว่า ทั้ง 2 วิธีการวิเคราะห์ มีค่าค่าความถูกต้องในการจัดกลุ่มเท่ากัน เมื่อพิจารณาถึงความเหมาะสมในการวิเคราะห์ข้อมูล ผู้วิจัยแนะนำให้ใช้วิธี MLR โดยใช้เทคนิค GEE เนื่องจากเป็นวิธีง่ายและสะดวกในการประยุกต์ใช้กับข้อมูลระยะยาว และสอดคล้องกับเงื่อนไขของข้อมูล สำหรับวิธีการของ MDA มีเงื่อนไขที่ใช้ในการวิเคราะห์มาก เช่น เงื่อนไขของตัวแปรอิสระต้องมีการแจกแจงแบบปกติหลายตัวแปร สำหรับฟังก์ชันสำเร็จรูปผู้วิจัยแนะนำให้ใช้ฟังก์ชัน REPOLR เนื่องจากมีประสิทธิภาพในการวิเคราะห์ดีกว่าฟังก์ชัน ORDGEE. en
dc.description.abstractalternative To compare two methods of multiple classification for longitudinal data. These two methods are multiple discriminant method (MDA) using Bayes’ rule as a classification rule and multiple logistic regression method (MLR) using generalized estimating equation (GEE) as a classification rule. The data consist of independent variables and a dependent variable. The dependent variable is categorical one which there are multiple categories. The independent variables are either quantitative variable or categorical variable. Three actual data sets from medical studies were analyzed using both methods (e.g. insomnia study, hip replacement study and achillies tendon rupture study, respectively). The correct classification rate is used as a criterion for comparing these two methods. The results are summarized as follows. From the first data set, when variance-covariance structure is uniform, and ORDGEE built-in function is used, it is found that the MLR method yields the higher correct classification rate. From the second data set, when variance-covariance structure is independent and uniform, and REPOLR built-in function is applied, it is found that both methods yield equal correct classification rate. From the third data set, when variance-covariance structure is independent and uniform, and REPOLR built-in function is applied, it is found that both methods yield equal correct classification rate. For appropriateness of data analysis, it is recommended that the MLR method with GEE technique should be used because it is easily and conveniently applied to longitudinal data. In contrast, the MDA method is required several assumptions such as multivariate normality of independent variables. For built-in function selection, it is recommended REPOLR should be used because it is more effective than ORDGEE function in all cases of variance-covariance structure. en
dc.format.extent 1004470 bytes
dc.format.mimetype application/pdf
dc.language.iso th es
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en
dc.relation.uri http://doi.org/10.14457/CU.the.2009.1344
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en
dc.subject การวิเคราะห์การจำแนกประเภท en
dc.subject การวิเคราะห์การถดถอย en
dc.title การเปรียบเทียบการวิเคราะห์ข้อมูลระหว่างการวิเคราะห์ข้อมูลจำแนกประเภท และการวิเคราะห์การถดถอยมัลติโนเมียลโลจิสติค สำหรับข้อมูลระยะยาว en
dc.title.alternative Comparison between discriminant analysis and multinomial logistic regression with longitudinal data en
dc.type Thesis es
dc.degree.name สถิติศาสตรมหาบัณฑิต es
dc.degree.level ปริญญาโท es
dc.degree.discipline สถิติ es
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en
dc.email.advisor fcomsdu@acc.chula.ac.th
dc.identifier.DOI 10.14457/CU.the.2009.1344


Files in this item

This item appears in the following Collection(s)

Show simple item record