Abstract:
This research aimed to study the differentiation of mesenchymal stem cells (MSCs) isolated from human periosteal primary cells. The study found that periosteum-derived cells expressed MSC surface markers but did not express hematopoietic cell surface markers. They could be induced to osteoblasts, chondroblasts, and adipoblasts as indicating by the expression of bone, cartilage, and fat cell indicator genes and specific histological staining. After that, the influences of particle size of demineralized bone (D) that was use to blend with collagen in order to fabricate three dimensional scaffolds were studied. The physical properties and biological properties of the scaffolds were evaluated. The results demonstrated that MSCs could attach and proliferate on collagen/ demineralized bone powder scaffold better than on pure collagen scaffold. Furthermore, collagen scaffolds blended with D at the particle size of 250-500 mm had excellent osteoblastic differentiation when compared to the ones with smaller D. The D having the size of 250-500 mm was further blended with gelatin and chitooligosaccharide (GCD) to form novel scaffold compared to gelatin/chitooligosaccharide (GC) scaffold, and pure gelatin (G) scaffold. It was found that biomaterial type did not affect their physical properties. Also, GCD scaffold could best promote osteoblastic differentiation. Finally, for in vivo study, all scaffolds were implanted in subcutaneous of male Wistar rats. After 2-weeks implantation, new collagen and new osteoid formation was found. After 8-weeks implantation, more bone formation was noticed. Comparing the potential of biocompatibility and osteoinductivity, GCD scaffold exhibited remarkably higher osteogenic differentiation potential than the other two scaffolds.