DSpace Repository

การเปรียบเทียบความแม่นยำของการพยากรณ์ด้วยตัวแบบอนุกรมเวลาแบบผสม

Show simple item record

dc.contributor.advisor นัท กุลวานิช en_US
dc.contributor.author ชญานิน บุญมานะ en_US
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี en_US
dc.date.accessioned 2016-12-01T08:09:57Z
dc.date.available 2016-12-01T08:09:57Z
dc.date.issued 2558 en_US
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/50577
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2558 en_US
dc.description.abstract การวิจัยนี้ศึกษาเปรียบเทียบความแม่นยำของค่าพยากรณ์ที่ได้จากตัวแบบ ARIMA, ตัวแบบผสมระหว่าง ARIMA กับเครือข่ายประสาทเทียม และตัวแบบผสมระหว่าง ARIMA กับซัพพอร์ทเวกเตอร์แมชชีน ในการพยากรณ์ราคาปิดหุ้น SCB ของธนาคารไทยพาณิชย์ จำกัด (มหาชน) โดยใช้ชุดข้อมูลจริงและชุดข้อมูลอนุกรมเวลาที่จำลองด้วยตัวแบบ ARIMA(0,1,1), ตัวแบบ ARIMA(0,1,2), ตัวแบบ ARIMA(1,1,0), ตัวแบบ ARIMA(1,1,1), ตัวแบบ ARIMA(1,1,2), ตัวแบบ ARIMA(2,1,0), ตัวแบบ ARIMA(2,1,1) และตัวแบบ ARIMA(2,1,2) เมื่อใช้เกณฑ์รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root mean square error: RMSE) เป็นเครื่องมือในการเปรียบเทียบตัวแบบ โดยตัวแบบใดที่มีค่า RMSE ต่ำสุด จะเป็นตัวแบบที่ดีที่สุด จากการศึกษาพบว่า ตัวแบบผสมระหว่าง ARIMA และซัพพอร์ทเวกเตอร์แมชชีน มีความแม่นยำในการพยากรณ์สูงที่สุด สำหรับการพยากรณ์ในชุดข้อมูลอนุกรมเวลาในกรณีที่จำลองด้วยตัวแบบ ARIMA(0,1,2), ตัวแบบ ARIMA(1,1,1) และตัวแบบ ARIMA(2,1,2) ส่วนตัวแบบผสมระหว่าง ARIMA และเครือข่ายประสาทเทียมนั้นให้ความแม่นยำในการพยากรณ์สูงที่สุดสำหรับการพยากรณ์ในชุดข้อมูลอนุกรมเวลาในกรณีที่จำลองด้วยตัวแบบ ARIMA(0,1,1), ตัวแบบ ARIMA(1,1,0), ตัวแบบ ARIMA(1,1,2), ตัวแบบ ARIMA(2,1,0) และตัวแบบ ARIMA(2,1,1) และสำหรับการพยากรณ์ในชุดข้อมูลจริงของราคาปิดหุ้น SCB รายสัปดาห์ของธนาคารไทยพาณิชย์ จำกัด (มหาชน) ที่มีลักษณะอนุกรมเวลาสอดคล้องกับตัวแบบ ARIMA(1,1,1) ผลการศึกษาพบว่าตัวแบบผสมระหว่าง ARIMA และซัพพอร์ทเวกเตอร์แมชชีน มีความแม่นยำในการพยากรณ์สูงที่สุดซึ่งสอดคล้องกับผลจากชุดข้อมูลจำลอง en_US
dc.description.abstractalternative This research is aimed to compare the prediction accuracy between three time series models, traditional ARIMA model, a hybrid model combing ARIMA model and Artificial neural network model, and a hybrid model combing ARIMA model and Support vector machine model by using real stock price datasets of the Siam commercial bank company and time series datasets simulated from ARIMA(0,1,1), ARIMA(0,1,2), ARIMA(1,1,0), ARIMA(1,1,1), ARIMA(1,1,2), ARIMA(2,1,0), ARIMA(2,1,1) and ARIMA(2,1,2) model. Root mean square error (RMSE) is used to compare the prediction accuracy from each model. The model which has the lowest RMSE is the best model. The results suggest that a hybrid model combing ARIMA model and Support vector machine model has the highest prediction accuracy for the case of ARIMA(0,1,2), ARIMA(1,1,1) and ARIMA(2,1,2) model. However, the prediction accuracy of a hybrid model combing ARIMA model and Artificial neural network model is found to be highest in the case of ARIMA(0,1,1), ARIMA(1,1,0), ARIMA(1,1,2), ARIMA(2,1,0) and ARIMA(2,1,1) model. A similar three forecasting models was developed and evaluated for the weekly closing price of stock price of the Siam commercial bank company. The results suggest that a hybrid model combing ARIMA(1,1,1) model and Support vector machine model has the highest prediction accuracy. We observed concordant results on real and simulated data. en_US
dc.language.iso th en_US
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.title การเปรียบเทียบความแม่นยำของการพยากรณ์ด้วยตัวแบบอนุกรมเวลาแบบผสม en_US
dc.title.alternative A COMPARATIVE PREDICTION ACCURACY OF HYBRID TIME SERIES MODELS en_US
dc.type Thesis en_US
dc.degree.name วิทยาศาสตรมหาบัณฑิต en_US
dc.degree.level ปริญญาโท en_US
dc.degree.discipline สถิติ en_US
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.email.advisor Nat.Ku@Chula.ac.th,nat@cbs.chula.ac.th en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record