DSpace Repository

การเปรียบเทียบวิธีลูกโซ่มาร์คอฟมอนติคาร์โลสำหรับการอนุมานแบบเบส์เมื่อมีเงื่อนไขบังคับเชิงอันดับ

Show simple item record

dc.contributor.advisor เสกสรร เกียรติสุไพบูลย์ en_US
dc.contributor.author ณภัชนันท์ อุทธโยธา en_US
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี en_US
dc.date.accessioned 2017-03-03T03:06:18Z
dc.date.available 2017-03-03T03:06:18Z
dc.date.issued 2559 en_US
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/52362
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2559 en_US
dc.description.abstract งานวิจัยนี้นำเสนอวิธีการสุ่มตัวอย่างของลูกโซ่มาร์คอฟมอนติคาร์โล (Markov chain Monte Carlo: MCMC) แบบใหม่ที่เรียกว่า โพลาร์เมโทรโปลิสฮิตแอนด์รันแบบแกมมา (Gamma type Polar Metropolis Hit-and-Run: PMHR-G) ซึ่งพัฒนามาจากวิธีโพลาร์เมโทรโปลิสฮิตแอนด์รันแบบปกติ (Normal type Polar Metropolis Hit-and-Run: PMHR-N) เพื่อประมาณค่าพารามิเตอร์บนเงื่อนไขที่ตัวแปรมีการจัดเรียงอันดับอย่างสมบูรณ์ และเปรียบเทียบประสิทธิภาพของวิธีการสุ่มตัวอย่างแบบ PMHR-G ที่นำเสนอกับวิธีการสุ่มตัวอย่างแบบ PMHR-N และวิธี MCMC อื่นที่รู้จักกันดีอีก 2 วิธี ได้แก่ วิธีการสุ่มตัวอย่างแบบกิบส์ (Gibbs) และวิธีการสุ่มตัวอย่างแบบฮิตแอนด์รัน (Hit-and-Run: HR) การวัดประสิทธิภาพอาศัยค่าขอบเขตบนของความเชื่อมั่นแบบข้างเดียวของตัวประกอบอัตราส่วนที่ปรับลดแล้ว (corrected potential scale reduction factor: PSRF) ประกอบกับกราฟค่าเฉลี่ยสะสมของตัวแปรที่สนใจศึกษา ข้อมูลที่ใช้เป็นข้อมูลจำลอง โดยมีจำนวนมิติ 3 ระดับคือ 10, 50 และ 100 ค่าสัมประสิทธิ์สหสัมพันธ์ 4 ระดับคือ 0, 0.5, 0.75 และ 0.9 และมีเวกเตอร์ค่าเฉลี่ย 3 ลำดับคือ เวกเตอร์ศูนย์ เวกเตอร์ที่มีสมาชิกอยู่ในรูปของลำดับเพิ่ม ซึ่งมีค่าตั้งแต่ -1 ถึง 1 และเวกเตอร์ที่มีสมาชิกอยู่ในรูปของลำดับลด ซึ่งมีค่าตั้งแต่ 1 ถึง -1 จากการทดลองทั้งหมด 36 กรณี พบว่าจากเกณฑ์การวัดประสิทธิภาพทั้ง 2 เกณฑ์ โดยมี 25 กรณี (69.44%) ให้ผลสรุปตรงกัน สำหรับกรณีที่ผลสรุปตรงกันและสามารถวัดประสิทธิภาพได้ มีทั้งหมด 13 กรณี พบว่า 12 กรณี (92.31%) ที่การสุ่มตัวอย่างแบบ PMHR-G มีประสิทธิภาพสูงที่สุด และมีเพียง 1 กรณี (7.69%) เท่านั้นที่พบว่าการสุ่มตัวอย่างแบบ Gibbs มีประสิทธิภาพสูงที่สุด en_US
dc.description.abstractalternative This research proposes a new Markov chain Monte Carlo (MCMC) sampler called Gamma-type Polar Metropolis Hit-and-Run (PMHR-G). The new sampler is developed from the Normal-type Polar Metropolis Hit-and-Run (PMHR-N) for parameter estimation conditional on a complete ranking of the variables. A study is performed to compare the efficiency among PMHR-G, PMHR-N and another two well-known MCMC sampler, namely Gibbs sampler and Hit-and-Run sampler. The upper confidence bound of the corrected potential scale reduction factor (PSRF) is employed as the performance measures, along with the graph of key variables’ cumulative means. The study is done on simulated data sets at three different dimensions (10, 50, 100), four different correlation coefficients (0, 0.5, 0.75, 0.9) and three different mean vectors (zero vector, increasing sequences from -1 to 1, decreasing sequences from 1 to -1). They form in total 36 experimental cases. The results show that the two performance criteria agree on 25 experimental cases (69.44%). In the cases that the two criteria, is measurable, agree on 13 experimental cases, PMHR-G performs best in 12 the cases (92.31%) and Gibbs performs best in 1 the remaining (7.69%). en_US
dc.language.iso th en_US
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2016.1181
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.subject วิธีมอนติคาร์โล
dc.subject การสุ่มตัวอย่าง (สถิติ)
dc.subject Monte carlo method
dc.subject Sampling (Statistics)
dc.title การเปรียบเทียบวิธีลูกโซ่มาร์คอฟมอนติคาร์โลสำหรับการอนุมานแบบเบส์เมื่อมีเงื่อนไขบังคับเชิงอันดับ en_US
dc.title.alternative A comparison of Markov chain Monte Carlo methods for Bayesian inference with rank constraints en_US
dc.type Thesis en_US
dc.degree.name วิทยาศาสตรมหาบัณฑิต en_US
dc.degree.level ปริญญาโท en_US
dc.degree.discipline สถิติ en_US
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en_US
dc.email.advisor Seksan.K@Chula.ac.th,seksan@cbs.chula.ac.th,seksan.kiatsupaibul@gmail.com en_US
dc.identifier.DOI 10.58837/CHULA.THE.2016.1181


Files in this item

This item appears in the following Collection(s)

Show simple item record