DSpace Repository

วิธีการประมาณค่าพารามิเตอร์ในตัวแบบการถดถอยเชิงเส้นพหุคูณเมื่อเกิดพหุสัมพันธ์

Show simple item record

dc.contributor.advisor มานพ วราภักดิ์
dc.contributor.author วราภรณ์ บุญยไพศาลเจริญ, 2521
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะพาณิชยศาสตร์และการบัญชี
dc.date.accessioned 2006-06-28T12:11:41Z
dc.date.available 2006-06-28T12:11:41Z
dc.date.issued 2546
dc.identifier.isbn 9741742487
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/578
dc.description วิทยานิพนธ์ (สต.ม)--จุฬาลงกรณ์มหาวิทยาลัย, 2546 en
dc.description.abstract การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อเปรียบเทียบวิธีประมาณค่าสัมประสิทธิ์การถดถอยพหุคูณเมื่อเกิดพหุสัมพันธ์ระหว่างตัวแปรอิสระ โดยการเปรียบเทียบวิธีการถดถอยองค์ประกอบหลัก(PC) วิธีการถดถอยแบบรากแฝง(LR) และวิธีการประมาณของลิวเมื่อมีข้อจำกัด(RL) ซึ่งเกณฑ์การเปรียบเทียบคือ ค่าเฉลี่ยของความคลาดเคลื่อนกำลังสองเฉลี่ยของสัมประสิทธิ์การถดถอยพหุคูณ ขนาดตัวอย่างที่ใช้ในการวิจัยเท่ากับ 15, 20, 30, 40, 50, 60, 70, 80, 90 และ 100 ความคลาดเคลื่อนมีการแจกแจงแบบปกติ ค่าเฉลี่ยเท่ากับ 0 ส่วนเบี่ยงเบนมาตรฐานเท่ากับ 1.0, 5.0 และ 10.0 ตามลำดับ ระดับความสัมพันธ์ระหว่างตัวแปรอิสระ X[subscript 1] และ X[subscript 2]เท่ากับ 0.10, 0.30, 0.50, 0.70, 0.80 และ 0.90 เมื่อจำนวนตัวแปรอิสระเท่ากับ 3 (X[subscript 1], X[subscript 2] และ X[subscript 3]) และเท่ากับ (0.10,0.30), (0.50,0.70) และ (0.80,0.90) สำหรับความสัมพันธ์ระหว่างตัวแปรอิสระ (X[subscript 1] และ X[subscript 2], X[subscript 4] และ X[subscript 5]) เมื่อจำนวนตัวแปรอิสระเท่ากับ 5 ข้อมูลที่ใช้ในการวิจัยได้จากการจำลองด้วยเทคนิคมอนติคาร์โลซึ่งกระทำซ้ำ 1,000 ครั้งในแต่ละสถานการณ์ ผลการวิจัยปรากฏว่าระดับความสัมพันธ์ ขนาดตัวอย่าง จำนวนตัวแปรอิสระ และส่วนเบี่ยงเบนมาตรฐานของความคลาดเคลื่อนต่างมีผลต่อการประมาณค่าสัมประสิทธิ์การถดถอยพหุคูณของทั้งสามวิธี โดยค่าเฉลี่ยของความคลาดเคลื่อนกำลังสองเฉลี่ยของสัมประสิทธิ์การถดถอยพหุคูณมีแนวโน้มลดลงเมื่อขนาดตัวอย่างเพิ่มขึ้น แต่มีแนวโน้มเพิ่มขึ้นเมื่อระดับความสัมพันธ์ และส่วนเบี่ยงเบนมาตรฐานของความคลาดเคลื่อน มีค่ามากขึ้น หรือจำนวนตัวแปรอิสระมีจำนวนมากขึ้น กรณีข้อมูลสอดคล้องกับข้อจำกัด ในทุกระดับความสัมพันธ์ และทุกขนาดตัวอย่าง วิธีการประมาณของลิวเมื่อมีข้อจำกัดจะให้ค่าเฉลี่ยของความคลาดเคลื่อนกำลังสองเฉลี่ยต่ำที่สุด ยกเว้นกรณีที่ส่วนเบี่ยงเบนมาตรฐานของความคลาดเคลื่อนมีขนาดเล็ก(1.0) วิธีการถดถอยองค์ประกอบหลัก วิธีการถดถอยแบบรากแฝงและวิธีการประมาณของลิวเมื่อมีข้อจำกัด จะให้ค่าเฉลี่ยของความคลาดเคลื่อนกำลังสองเฉลี่ยไม่แตกต่างกัน กรณีข้อมูลไม่สอดคล้องกับข้อจำกัด ในทุกกรณีของระดับความสัมพันธ์ ขนาดตัวอย่าง ส่วนเบี่ยงเบนมาตรฐานของความคลาดเคลื่อน และจำนวนตัวแปรอิสระ วิธีการถดถอยองค์ประกอบหลักเป็นวิธีที่ให้ค่าเฉลี่ยของความคลาดเคลื่อนกำลังสองเฉลี่ยของสัมประสิทธิ์การถดถอยพหุคูณต่ำที่สุด en
dc.description.abstractalternative The objective of this research is to compare multiple regression coefficients estimating methods when having multicollinearity among independent variables. The estimation methods are Principal Component Regression method (PC), Latent Root Regression method (LR) and Restricted Liu Estmator method (RL). The criterion of comparison is the average value of mean square error. This research used sample sizes 15, 20, 30, 40, 50, 60, 70, 80, 90 and 100. The random errors are independent and identically distributed normal with mean zero and standard deviation 1.0, 5.0 and 10.0, respectively. The level of correlations among independent variables X[subscript 1] and X[subscript 2] equal 0.10, 0.30, 0.50, 0.70, 0.80 and 0.90 for the number of independent variables of 3 (X[subscript 1], X[subscript 2] and X[subscript 3]) and are (0.10,0.30), (0.50,0.70) and (0.80,0.90) for correlations of (X[subscript 1] and X[subscript 2], X[subscript 4] and X[subscript 5]) for the number of independent variables of 5. The study used the Monte Carlo Simulation method. The experiment was repeated 1,000 times under each situations. The results of this research showed that level of correlations, sample sizes, number of independent variables and standard deviation have effect to multiple regression coefficients estimates. The average values of mean square error of multiple regression coefficients decreases when sample size increases but it increases when level of correlation or standard deviation increases or the number of dependence variables increases. In case of data are satisfy restriction. In every level of correlation every sample size, the average value of mean square error of Restricted Liu estimator method is smallest, except in the case of standard deviation is small (1.0), the average values of mean square error of the three methods are not different. In case of data are not satisfy restriction. In every level of correlation, sample size, standard deviation and number of independent variables. Principal Component Regression method is smallest average value of mean square error of multiple regression coefficients. en
dc.format.extent 1330712 bytes
dc.format.mimetype application/pdf
dc.language.iso th en
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย en
dc.relation.uri http://doi.org/10.14457/CU.the.2003.1257
dc.rights จุฬาลงกรณ์มหาวิทยาลัย en
dc.subject การประมาณค่าพารามิเตอร์ en
dc.subject การวิเคราะห์การถดถอย en
dc.subject พหุสัมพันธ์ en
dc.subject วิธีมอนติคาร์โล en
dc.title วิธีการประมาณค่าพารามิเตอร์ในตัวแบบการถดถอยเชิงเส้นพหุคูณเมื่อเกิดพหุสัมพันธ์ en
dc.title.alternative Parameter-estimation methods in multiple linear regression model with multicollinearity en
dc.type Thesis en
dc.degree.name สถิติศาสตรมหาบัณฑิต en
dc.degree.level ปริญญาโท en
dc.degree.discipline สถิติ en
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย en
dc.email.advisor fcommva@acc.chula.ac.th
dc.identifier.DOI 10.14457/CU.the.2003.1257


Files in this item

This item appears in the following Collection(s)

Show simple item record