Abstract:
ปริมาณโลหิตและส่วนประกอบโลหิตที่เพียงพอในธนาคารเลือดนั้นมีความสำคัญในการรักษาผู้ป่วย ดังนั้นธนาคารเลือดทุกแห่งต้องส่งเสริมให้ผู้บริจาคโลหิตมีสุขภาพดีและมีคุณสมบัติเหมาะสมในการบริจาคโลหิตอย่างสม่ำเสมอจากข้อมูลของศูนย์บริการโลหิตแห่งชาติ สภากาชาดไทยพบผู้ถูกปฏิเสธการบริจาคโลหิตประมาณร้อยละ 15-20 จากจำนวนผู้ประสงค์จะบริจาคโลหิตทั้งหมด ส่วนใหญ่มีสาเหตุจากค่าฮีโมโกลบิน (hemoglobin; Hb) ไม่ผ่านเกณฑ์ นำไปสู่ความผิดหวังความไม่พอใจเพราะผู้บริจาคโลหิตต้องเสียเวลา ค่าใช้จ่ายในการเดินทางแต่ไม่ได้บริจาคโลหิตและส่งผลกระทบต่อการจัดหาโลหิตโดยตรง หากสามารถพยากรณ์ผลตรวจ Hb ได้ล่วงหน้าจะช่วยลดผลกระทบปัญหา เป็นประโยชน์ทั้งต่อผู้บริจาคโลหิต ธนาคารเลือดและผู้ป่วย การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาและเปรียบเทียบประสิทธิภาพเทคนิคการเรียนรู้ของคอมพิวเตอร์ในการพยากรณ์จำแนกกลุ่มผลตรวจ Hb ของผู้บริจาคโลหิต โดยเก็บข้อมูล 44 ตัวแปรของผู้บริจาคโลหิตจำนวน 2,180 รายจากภาคบริการโลหิตแห่งชาติ 12 แห่งและสถานีกาชาดหัวหินเฉลิมพระเกียรติตั้งแต่ 1 ต.ค. 2561 ถึง 31 พ.ค. 2562 นำมากลั่นกรองข้อมูล คัดเลือกตัวแปร พัฒนาตัวแบบทางเหมืองข้อมูลได้แก่ ต้นไม้ตัดสินใจ ซัพพอร์ตเวกเตอร์แมชชีน การจำแนกแบบเบส์อย่างง่ายและโครงข่ายประสาทเทียม จากนั้นเปรียบเทียบประสิทธิภาพการจำแนกกลุ่มของตัวแบบพยากรณ์ พบว่าต้นไม้ตัดสินใจเป็นตัวแบบการจำแนกกลุ่มที่เหมาะสมที่สุดโดยให้ค่าความถูกต้อง ค่าความไว ค่าความจำเพาะ ค่าการพยากรณ์ผลบวก ค่าการพยากรณ์ผลลบสูงที่สุดและค่า AUC เท่ากับร้อยละ 92.20, 82.98, 94.74, 81.25, 95.29 และ 0.943 ตามลำดับ ซึ่งต้นไม้ตัดสินใจที่ได้จากศึกษานี้อาจนำไปพัฒนาต่อเป็นระบบประเมินออนไลน์ก่อนเดินทางมาบริจาคโลหิตได้