Abstract:
Diabetes has the devastating impacts on the quality of life and healthcare expenditures. Thus, the further improvements on glycaemic assessment test devices have been still required for patients with diabetes, particularly in resource-limited settings. Herein, various novel analytical devices for measuring diabetic markers were proposed as trustworthy assays for glycaemic monitoring. Firstly, the colourimetric determination of fructosamine and serum albumin in whole blood samples could be performed simultaneously on the microfluidic paper-based analytical devices (µPADs), demonstrating considerable future potential for independent bedside glycaemic monitoring in diabetic individuals. Secondly, selective 3-aminophenylboronic acid (APBA)-modified eggshell membrane (ESM) and APBA-modified interdigitated gold microelectrode array (IDA) chip were constructed as specific binding components of a device for label-free electrochemical impedance spectroscopy (EIS) measurement of glycated haemoglobin (HbA1c). The APBA plays a prominent role in the selective binding of HbA1c via cis-diol interactions with a boronate-recognition group. Lastly, to combine a multiplex biomarker assay with a selective low-cost platform, the three-dimensional paper-based electrochemical impedance device (3D-PEID) and the multiplexed microfluidic system were fabricated for measuring multiple diabetic markers using a single platform in combination with a specific single-frequency impedance measurement.