Abstract:
This research studies on the performance of Binary Particle Swarm Optimization (BPSO) algorithm. The first part is finding the best inertia weight of BPSO from various types of inertia weight. The second part is optimizing the cross-sectional area of steel structures and topology of bracing system under vertical and lateral load. The structures studied in the research include unbraced frames and X-braced frames. Moreover, the braced frame also investigates the influence of the classification groups of elements. The elements are classified into finer groups than the original group. The design of the structure follows the AISC code. From the investigation in the first part, a constant inertia weight of 0.98 is the best. In the second part, minimum weights of unbraced frames using BPSO are the lowest weight, except three-bays, twenty-four stories frame. For braced frames with original grouping, all examples get a lower weight than the unbraced frames. For studying the influence of group, the results of the two examples are contradictory. One bay, ten stories frame with new group has a minimum weight less than the original while three-bays but twenty-four stories frame is opposite.