Abstract:
ทฤษฎีการประมูลเป็นหนึ่งในศาสตร์ที่แพร่หลายนิยมไปในหลากหลายอุตสาหกรรมและภาคส่วนต่าง ๆ ทั้งภาคเอกชน ภาครัฐบาล และภาคการศึกษา เพื่อการจัดการทรัพยากรที่มีอยู่อย่างจำกัดให้เกิดประสิทธิภาพสูงสุด ดังเช่นภาควิชาวิศวกรรมคอมพิวเตอร์
จุฬาลงกรณ์มหาวิทยาลัยได้นำเอาทฤษฎีดังกล่าวมาบริหารจัดการปัญหาการลงทะเบียนของนิสิตนักศึกษา โดยใช้การประมูลทดแทนการวิธีการลงทะเบียนแบบเดิม นิสิตนักศึกษาจะได้เงินจำลองในปริมาณที่จำกัดจำนวนหนึ่งสำหรับใช้ตลอดการศึกษา ซึ่งหากใครมีความต้องการเรียนในรายวิชานั้นมากก็จำเป็นจะต้องใช้เงินจำลองจำนวนมากกว่าปกติเป็นต้น อย่างไรก็ตามหากใช้เงินจำลองไปในปริมาณมากเกินความจำเป็นอาจก่อให้เกิดความสูญเสียโอกาสในการประมูลรายวิชาที่สำคัญอื่น ๆ การวิจัยชิ้นนี้ จึงทดสอบการประเมินการจัดสรรโทเคนสำหรับการประมูลวิชาด้วยการเรียนรู้ของเครื่อง จำนวน 3 วิธี ได้แก่ ต้นไม้ตัดสินใจ แรนดอมฟอร์เรส และโครงข่ายประสาทเทียม เพื่อเป็นเครื่องมือในการกำหนดกลยุทธ์ หรือ วางแผนการเรียนให้เกิดประสิทธิภาพและเกิดประโยชน์ต่อผู้ใช้งานสูงสุด และผลการวิจัยพบว่า แรมดอมฟอร์เรสเป็นวิธีที่มีประสิทธิภาพมากที่สุดในการนำไปใช้ทำนายค่าโทเคนเพื่อนำไปใช้ในการประมูลวิชาต่อไป