Abstract:
A bacterial cellulose (BC) pellicle is a polysaccharide produced by Acetobacter xylinum. BC pellicles have many advantages such as hydrophilicity, ultrafine 3D network structure, high purity, high water absorption capacity, in addition to the never dried state of a hydrogel. Accordingly, BC pellicles are a good candidate for being used as a wound dressing material because it can provide a moist wound environment, promote the wound healing process, and has excellent molding to all facial body contours. However, in a large scale production of BC pellicles, damage from tearing of BC pellicle may occur during cultivation, sterilization, and packing into packaging. In order to reinforce BC pellicles, BC composites consisting of fabric embedded in the BC pellicles were fabricated. Cotton Lenin, filter cloth, muslin, shefong (polyester) and nylon mesh were used to investigate the effect of the types of fabrics on mechanical properties, morphology, water absorption capacity, and water vapor transmission rate of the composites. In addition, the surface of the fabrics was modified by dielectric barrier discharge (DBD) plasma treatment before cultivation in culture medium containing Acetobacter xylinum. By applying DBD plasma treatment, hydrophilicity. and surface roughness of the fabrics could be enhanced. The effect of DBD plasma treatment on production yield, change in chemical structure of the plasma-treated fabrics, morphology, mechanical properties, water absorption, and water vapor transmission rate of the BC composites was examined.