Abstract:
เทคนิคการประมวลผลจากภาพถูกนำมาใช้กันอย่างแพร่หลายในหลากหลายอุตสาหกรรมในปัจจุบัน โดยการนำมาประยุกต์ใช้กับทางการแพทย์ก็เป็นอีกหนึ่งอุสาหกรรมที่ได้รับความนิยม ทั้งนี้ปัญหาในการจำแนกภาพสามารถทำได้หลายวิธีด้วยกัน หนึ่งในนั้น คือการนำการเรียนรู้เชิงลึกมาประยุกต์ใช้ในการแก้ไขปัญหา โดยการจำแนกประเภทผ่านการเรียนรู้เชิงลึกสามารถแก้ไขได้อย่างรวดเร็วและแม่นยำผ่านการนำโครงข่ายการเรียนรู้เชิงลึกแบบคอนโวลูชั่น หรือ ซีเอ็นเอ็น (Convolutional Neural Networks หรือ CNN) มาใช้กับเทคนิคการเรียนรู้ถ่ายทอด (Transfer Learning) งานวิจัยนี้จึงนำเสนอวิธีการประยุกต์ใช้เทคนิคการเรียนรู้ถ่ายทอดในการฝึกสอนแบบจำลองโครงข่ายคอนโวลูชั่นเชิงลึกเพื่อจำแนกภาพถ่ายรังสีทรวงอกออกเป็น 3 ประเภท คือ 1) ภาพถ่ายรังสีทรวงอกของผู้ป่วยปกติ 2) ภาพถ่ายรังสีทรวงอกของผู้ป่วยที่ติดเชื้อโควิด19 3) ภาพถ่ายรังสีทรวงอกของผู้ติดเชื้อปอดอักเสบจากไวรัส ผ่านแบบจำลองที่ถูกฝึกมาเรียบร้อย (Pre-trained Model) แล้วสามแบบจำลอง ประกอบด้วย โมไบล์เน็ตวี2 (MobileNetV2) เรสเน็ต50 (Resnet50) และอินเซปชันวี3 (InceptionV3) ซึ่งได้ถูกเลือกมาใช้ในการทดสอบเพื่อสร้างแบบจำลองทั้งหมด 3 ตัว ประกอบด้วย ซีเอ็นเอ็น+โมไบล์เน็ตวี2 ซีเอ็นเอ็น+เรสเน็ต50 และ ซีเอ็นเอ็น+อินเซปชันวี3 ซึ่งพบว่า สมรรถนะแบบจำลองซีเอ็นเอ็น+อินเซปชันวี3 ให้ผลลัพธ์ที่ดีที่สุด จึงถูกเลือกนำไปปรับรายละเอียด การประเมินผลบนชุดข้อมูลทดสอบของแบบจำลองซีเอ็นเอ็น+อินเซปชันวี3 หลังจากทำการปรับรายละเอียด (Fine Tuning) ทั้งหมดด้วยกัน 8 ชั้น คือ ชั้นที่ 280, 250, 230, 200, 160, 150, 130 และ 120 ซึ่งแตกต่างจากบทความวิจัยส่วนใหญ่ที่ทำการละทิ้งการตรึงเพียงชั้นเดียว โดยเห็นได้ว่าการปรับรายละเอียดของแบบจำลองที่ทำการละทิ้งการตรึงตั้งแต่ชั้น 150 ให้ผลการทดสอบการจำแนกภาพถ่ายรังสีทรวงอกของผู้ป่วยที่ติดเชื้อโควิด19 ได้ความแม่นยำที่ดีที่สุดที่ 95% ซึ่งเห็นได้ว่าแนวทางการจำแนกประเภทภาพที่นำเสนอมีความหวังสามารถนำไปพัฒนาต่อยอด เพื่อเป็นประโยชน์ต่ออุตสาหกรรมการแพทย์ได้