Abstract:
มีงานวิจัยเกี่ยวกับเรื่องการสร้างคำถามอยู่จำนวนมากในขอบเขตภาษาอังกฤษแต่แทบไม่มีงานวิจัยเรื่องการสร้างคำถามในภาษาไทย มีชุดข้อมูลคำถาม-คำตอบในขอบเขตของภาษาอังกฤษมากกว่า 1 ล้านคู่คำถาม-คำตอบซึ่งมีจำนวนมากเมื่อเปรียบเทียบกับในขอบเขตของภาษาไทยที่มีอยู่เพียงประมาณ 12,000 คู่ งานวิจัยนี้ขอนำเสนอวิธีพัฒนาการสร้างคำถามอัตโนมัติจากบทความโดยไม่ต้องมีคำตอบในการสร้างคำถาม ภายใต้เงื่อนไขการฝึกสอนจากชุดข้อมูลที่มีอยู่อย่างจำกัด โดยแบบจำลองการสร้างคำถามอัตโนมัติซึ่งฝึกสอนโดยแบบจำลองที่ผ่านการเรียนรู้มาก่อน MT5 จากชุดข้อมูลที่มนุษย์สร้างขึ้น สามารถสร้างคำถามจากชุดข้อมูลภาษาไทยที่เมื่อประเมินอัตโนมัติโดยวัดจากคะแนน BLEU-1 ได้คะแนน 56.19 เราจึงนำเสนอวิธีการเพิ่มประสิทธิภาพการสร้างคำถามจากการสังเคราะห์ข้อมูลและกลไกที่นำเสนอเพิ่มเติมโดยยังคงใช้เพียงแบบจำลองที่ผ่านการเรียนรู้มาก่อน MT5 ซึ่งแบบจำลองที่ผ่านการพัฒนาแล้วมีคะแนน BLEU-1 ถึง 59.03 มากกว่าแบบจำลองที่ผ่านมา นอกจากนี้ผลการประเมินประสิทธิภาพของคำถามโดยมนุษย์ยังแสดงคะแนนด้านความไพเราะ 4.40 คะแนน, ด้านความเกี่ยวข้องกับบทความ 4.65 คะแนนและด้านการตอบคำถามได้จากบทความ 4.7 คะแนนจากทั้งหมด 5 คะแนน