DSpace Repository

การสร้างคำถามภาษาไทยโดยใช้ MT5

Show simple item record

dc.contributor.advisor อติวงศ์ สุชาโต
dc.contributor.advisor โปรดปราน บุณยพุกกณะ
dc.contributor.advisor เนื่องวงศ์ ทวยเจริญ
dc.contributor.author ณัฎฐนิช วิวัฒน์บุตรสิริ
dc.contributor.other จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
dc.date.accessioned 2022-07-23T05:18:04Z
dc.date.available 2022-07-23T05:18:04Z
dc.date.issued 2564
dc.identifier.uri http://cuir.car.chula.ac.th/handle/123456789/80134
dc.description วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564
dc.description.abstract มีงานวิจัยเกี่ยวกับเรื่องการสร้างคำถามอยู่จำนวนมากในขอบเขตภาษาอังกฤษแต่แทบไม่มีงานวิจัยเรื่องการสร้างคำถามในภาษาไทย มีชุดข้อมูลคำถาม-คำตอบในขอบเขตของภาษาอังกฤษมากกว่า 1 ล้านคู่คำถาม-คำตอบซึ่งมีจำนวนมากเมื่อเปรียบเทียบกับในขอบเขตของภาษาไทยที่มีอยู่เพียงประมาณ 12,000 คู่ งานวิจัยนี้ขอนำเสนอวิธีพัฒนาการสร้างคำถามอัตโนมัติจากบทความโดยไม่ต้องมีคำตอบในการสร้างคำถาม ภายใต้เงื่อนไขการฝึกสอนจากชุดข้อมูลที่มีอยู่อย่างจำกัด โดยแบบจำลองการสร้างคำถามอัตโนมัติซึ่งฝึกสอนโดยแบบจำลองที่ผ่านการเรียนรู้มาก่อน MT5 จากชุดข้อมูลที่มนุษย์สร้างขึ้น สามารถสร้างคำถามจากชุดข้อมูลภาษาไทยที่เมื่อประเมินอัตโนมัติโดยวัดจากคะแนน BLEU-1 ได้คะแนน 56.19 เราจึงนำเสนอวิธีการเพิ่มประสิทธิภาพการสร้างคำถามจากการสังเคราะห์ข้อมูลและกลไกที่นำเสนอเพิ่มเติมโดยยังคงใช้เพียงแบบจำลองที่ผ่านการเรียนรู้มาก่อน MT5 ซึ่งแบบจำลองที่ผ่านการพัฒนาแล้วมีคะแนน BLEU-1 ถึง 59.03 มากกว่าแบบจำลองที่ผ่านมา นอกจากนี้ผลการประเมินประสิทธิภาพของคำถามโดยมนุษย์ยังแสดงคะแนนด้านความไพเราะ 4.40 คะแนน, ด้านความเกี่ยวข้องกับบทความ 4.65 คะแนนและด้านการตอบคำถามได้จากบทความ 4.7 คะแนนจากทั้งหมด 5 คะแนน
dc.description.abstractalternative There are numerous publications of Question Generation (QG) in English but less in Thai. More than million question-answer pairs are available in the English language, compared with only around 12,000 question-answer pairs in the Thai language. This paper presents a method to improve automatic Thai QG from given passages without an answer. Under a dataset of insufficient size. Our evaluation showed that a QG model which was trained by the pre-trained model MT5 from a Thai dataset achieved a BLEU-1 score of 56.19. We proposed a method to generate synthetic data and an additional mechanism by using a single pre-trained model. Our best model outperformed the previous model by achieving a BLEU-1 score of 59.03. The results and from human evaluation in fluency score was 4.40, the relevance score is 4.65, and the answer-ability score is 4.7 from 5.0.
dc.language.iso th
dc.publisher จุฬาลงกรณ์มหาวิทยาลัย
dc.relation.uri http://doi.org/10.58837/CHULA.THE.2021.850
dc.rights จุฬาลงกรณ์มหาวิทยาลัย
dc.subject.classification Computer Science
dc.subject.classification Computer Science
dc.title การสร้างคำถามภาษาไทยโดยใช้ MT5
dc.title.alternative Question generation in the Thai language using MT5
dc.type Thesis
dc.degree.name วิทยาศาสตรมหาบัณฑิต
dc.degree.level ปริญญาโท
dc.degree.discipline วิทยาศาสตร์คอมพิวเตอร์
dc.degree.grantor จุฬาลงกรณ์มหาวิทยาลัย
dc.identifier.DOI 10.58837/CHULA.THE.2021.850


Files in this item

This item appears in the following Collection(s)

Show simple item record