Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/20015
Title: | การผสานคุณลักษณะทางสถิติกับนิวรอลเน็ตเวิร์กเพื่อจำแนกผู้ใช้บนข้อความอิสระขนาดสั้น |
Other Titles: | A combination of statistical features and neural networks to classify users on short free text |
Authors: | วรุตม์ โรจน์รุ่งวศินกุล |
Advisors: | สุกรี สินธุภิญโญ |
Other author: | จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์ |
Subjects: | เครือข่ายคอมพิวเตอร์ -- มาตรการความปลอดภัย คอมพิวเตอร์ -- การควบคุมการเข้าถึง ความปลอดภัยในระบบคอมพิวเตอร์ นิวรัลเน็ตเวิร์ค (คอมพิวเตอร์) Computer networks -- Security measures Computers -- Access control Computer security Neural networks (Computer sciences) |
Issue Date: | 2553 |
Publisher: | จุฬาลงกรณ์มหาวิทยาลัย |
Abstract: | การจำแนกผู้ใช้จากระยะเวลาในการพิมพ์ เป็นหนึ่งในวิธีการยืนยันตัวตนที่น่าสนใจในปัจจุบัน เพราะสามารถใช้งานได้โดยไม่ต้องติดตั้งอุปกรณ์เพิ่มเติม และยังสามารถใช้ร่วมกับวิธีการจำแนกด้วยชื่อผู้ใช้และรหัสผ่านแบบเดิมได้อีกด้วย งานวิจัยที่ผ่านมาอาจแบ่งได้เป็นสองประเภท คืองานวิจัยที่ศึกษาการใช้ข้อความที่ถูกกำหนดไว้ และงานวิจัยที่ศึกษาการใช้ข้อความอิสระ งานวิจัยส่วนมากนั้นจะเป็นศึกษาการใช้ข้อความที่ถูกกำหนดไว้ และมีบางงานวิจัยที่รายงานผลการจำแนกได้ดีมาก มีเพียงส่วนน้อยเท่านั้นที่ศึกษาการใช้ข้อความอิสระ และงานวิจัยเหล่านั้นยังต้องการข้อความอิสระขนาดยาวเพื่อให้ได้ผลการจำแนกที่ดี วิทยานิพนธ์นี้จึงนำเสนอวิธีการใช้ข้อความอิสระขนาดสั้น เพื่อให้ได้ผลการจำแนกที่ดีขึ้นกว่างานวิจัยที่เคยมีมา โดยใช้วิธีการแปลงข้อมูลเวลาในการพิมพ์จากตัวอย่าง ให้เป็นเวกเตอร์ของคุณลักษณะทางสถิติที่สามารถนำไปใช้งานกับนิวรอลเน็ตเวิร์กได้ และยังเสนอการผสานคุณลักษณะเพื่อให้ได้ผลการจำแนกที่ดีขึ้นอีกด้วย จากผลการทดลองพบว่า วิธีการที่นำเสนอให้ผลการจำแนกผู้ใช้ได้ดีกว่าวิธีอื่นเมื่อใช้ข้อความอิสระขนาดสั้น และให้ผลการจำแนกเทียบเท่ากันกับวิธีอื่น เมื่อใช้ข้อความอิสระที่มีความยาวมากขึ้น |
Other Abstract: | Currently, user classification using keystroke latency patterns is one of the interesting authentication methods because this method does not require any additional devices and can be combined with traditional username-password authentication. Previous research can be categorized into two groups, namely fixed-text and works free-text. Most of the works concerned fixed-text and some of them reported a very good result. Only a few works concerned free-text and those works still require long free-text input sample to obtain a good classification result. Thus, this thesis proposes a method to use short length free-text input and obtain better user classification result. This method consists of how to transform keystroke latencies from a sample into a vector of statistical features that can be used with neural network and also proposes a combination of features to obtain better user classification result. The results show that the proposed method yields better classification result when using short length free-text input and also gives comparable results when using longer free-text input. |
Description: | วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2553 |
Degree Name: | วิศวกรรมศาสตรมหาบัณฑิต |
Degree Level: | ปริญญาโท |
Degree Discipline: | วิศวกรรมคอมพิวเตอร์ |
URI: | http://cuir.car.chula.ac.th/handle/123456789/20015 |
URI: | http://doi.org/10.14457/CU.the.2010.188 |
metadata.dc.identifier.DOI: | 10.14457/CU.the.2010.188 |
Type: | Thesis |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
warut_ro.pdf | 2.51 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.