Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/55841
Title: General form of slightly compressible modules
Other Titles: รูปทั่วไปของสไลต์ลีคอมเพรสซิเบิลมอดูล
Authors: Phatsarapa Janmuang
Advisors: Samruam Baupradist
Other author: Chulalongkorn University. Faculty of Science
Advisor's Email: samruam.b@chula.ac.th
Subjects: Rings (Algebra)
Associative rings
ริง (พีชคณิต)
ริงเปลี่ยนหมู่
Issue Date: 2012
Publisher: Chulalongkorn University
Abstract: In this thesis, we determine a general form of slightly compressible modules. Let R be an associative ring with identity and M a right R-module. A right R-module N is called an M-slightly compressible module if, for every nonzero submodule A of N, there exists a nonzero R-module homomorphism from M to A. In the case that M = N, N is, in fact, a slightly compressible module. Moreover, we provide conditions for any right R-module to be an M-slightly compressible module and study some properties of M-slightly compressible modules. Next, we introduce the concept of M-slightly compressible injective modules. A right R-module N is called an M-slightly compressible injective module if every R-module homomorphism from an M-slightly compressible submodule of M to N can be extended to M. Moreover, we study some properties of M-slightly compressible injective modules and also provide examples of them. Finally, we introduce the concept of sub-M-principally injective modules. A right R-module N is called a sub-M-principally injective madule if for any nonzero submodule A of M, any R-module homomorphism from A-cyclic submodule of A to N can be extended to M. Moreover, we study some properties of sub-M-principally injective modules and also provide examples of them.
Other Abstract: ในวิทยานิพนธ์นี้ เรากำหนดรูปทั่วไปของสไลต์ลีคอมเพรสซิเบิลมอดูล กำหนดให้ R เป็นริงเปลี่ยนหมู่ที่มีเอกลักษณ์ และ M เป็น R-มอดูลทางขวา จะเรียก R-มอดูลทางขวา N ว่าเป็น M-สไลต์ลีคอมเพรสซิเบิลมอดูล ถ้าทุกๆ สับมอดูล A ที่ไม่ใช่ศูนย์ของ N มี R-มอดูลโฮโมมอร์ฟิซึมที่ไม่ใช่ศูนย์จาก M ไปยัง A ในกรณีที่ M = N เราได้ว่า N เป็นสไลต์ลีคอมเพรสซิเบิลมอดูล นอกจากนี้เราให้เงื่อนไขสำหรับการที่ R-มอดูลทางขวา จะเป็น M-สไลต์ลีคอมเพรสซิเบิลมอดูล และศึกษาสมบัติต่างๆ ของ M-สไลต์ลีคอมเพรสซิเบิลมอดูล ต่อจากนั้นเราแนะนำแนวคิดของ M-สไลต์ลีคอมเพรสซิเบิลอินเจคทีฟมอดูล โดยจะเรียก R-มอดูลทางขวา N ว่าเป็น M-สไลต์ลีคอมเพรสซิเบิลอินเจคทีฟมอดูล ถ้าทุก ๆ R-มอดูลโฮโมมอร์ฟิซึมจาก M-สไลต์ลีคอมเพรสซิเบิลสับมอดูลของ M ไปยัง N สามารถขยายไปบน M นอกจากนี้เราศึกษาสมบัติต่างๆ ของ M-สไลต์ลีคอมเพรสซิเบิลอินเจคทีฟมอดูล และหาตัวอย่างที่สอดคล้อง ในส่วนสุดท้าย เราแนะนำแนวคิดของ สับ-M-พรินซิเพิลลีอินเจคทีฟมอดูล โดยจะเรียก R-มอดูลทางขวา N ว่าเป็น สับ-M-พรินซิเพิลลีอินเจคทีฟมอดูล ถ้าทุกๆ สับมอดูล A ที่ไม่ใช่ศูนย์ของ Mและทุกๆ R-มอดูลโฮโมมอร์ฟิซึมจาก A-ไซคลิกสับมอดูลของ A ไปยัง N สามารถขยายไปบน M นอกจากนี้เราศึกษาสมบัติต่างๆของสับ-M-พรินซิเพิลลีอินเจคทีฟมอดูล และหาตัวอย่างที่สอดคล้อง
Description: Thesis (M.Sc.)--Chulalongkorn University, 2012
Degree Name: Master of Science
Degree Level: Master's Degree
Degree Discipline: Mathematics
URI: http://cuir.car.chula.ac.th/handle/123456789/55841
URI: http://doi.org/10.14457/CU.the.2012.328
metadata.dc.identifier.DOI: 10.14457/CU.the.2012.328
Type: Thesis
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
Phatsarapa Janmuang.pdf341.94 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.