Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/81625
Title: | Hamiltonian decompositions of hypergraphs |
Other Titles: | การแยกแฮมิลโตเนียนของไฮเพอร์กราฟ |
Authors: | Chutima Saengchampa |
Advisors: | Chariya Uiyyasathian |
Other author: | Chulalongkorn University. Faculty of Sciences |
Issue Date: | 2021 |
Publisher: | Chulalongkorn University |
Abstract: | In this dissertation, we first discuss four versions of Hamiltonicity in hypergraphs. We mainly study the existence problem of Hamiltonian decompositions of uniform hypergraphs based on two versions of Hamiltonian cycles, so called ``KK-definition" and ``WJ-definition". For KK-definition, we create a recursive construction of KK-Hamiltonian decomposition of complete 3-uniform hypergraphs. Our construction method uses a KK-Hamiltonian decomposition of the complete 3-uniform hypergraph, Kt(3), and some well-known graph decompositions to obtain a KK-Hamiltonian decomposition of the complete t-partite 3-uniform hypergraph, Kt(n)(3), when t=4,8 (mod12), n>=2, as well as a KK-Hamiltonian decomposition of K2t(3). Therefore, together with the current results in literatures, our method provides a KK-Hamiltonian decomposition of the complete 3-uniform hypergraph, Kt(3), and the complete t-partite 3-uniform hypergraph, Kt(n)(3), when t=2m, 5*2m, 7*2m, 11*2m and m>=2, and n>=2. Furthermore, we establish a WJ-Hamiltonian decomposition of the complete 4-uniform bipartite hypergraph, Kn,n(4), where n=1(mod 4) and n is a prime number. |
Other Abstract: | วิทยานิพนธ์ฉบับนี้เราศึกษานิยามที่แตกต่างกัน 4 นิยามของวัฏจักรแฮมิลโตเนียนในไฮเพอร์ กราฟ ซึ่งเราเน้นการศึกษาปัญหาเรื่องการมีอยู่ของการแยกแฮมิลโตเนียนของไฮเพอร์กราฟเอกรูปโดยใช้นิยามของวัฏจักรแฮมิลโตเนียนสองแบบคือ ``นิยามแบบ KK" และ ``นิยามแบบ WJ" สำหรับนิยามแบบ KK เราสร้างการแยกแฮมิลโตเนียนแบบ KK ของไฮเพอร์กราฟเอกรูปบริบูรณ์แบบเวียนเกิด การสร้างของเราใช้การแยกแฮมิลโตเนียนแบบ KK ของไฮเพอร์กราฟเอกรูปบริบูรณ์ Kt(3) และการแยกของกราฟบางชนิดซึ่งเป็นที่รู้จักในการสร้างการแยกแฮมิลโตเนียนแบบ KK ของไฮเพอร์กราฟเอกรูปหลายส่วนบริบูรณ์ Kt(n)(3) เมื่อ $t \equiv 4,8 \Mod{12}$ และ n>=2 รวมไปถึงการแยกแฮมิลโตเนียนแบบ KK ของไฮเพอร์กราฟเอกรูปหลายส่วนบริบูรณ์ K2t(3)ดังนั้นเราสามารถใช้ผลการศึกษาในปัจจุบันของการแยกแฮมิลโตเนียนแบบ KK ของไฮเพอร์กราฟเอกรูปบริบูรณ์ Kt(3) ในการสร้างการแยกแฮมิลโตเนียนแบบ KK ของไฮเพอร์กราฟเอกรูปบริบูรณ์ Kt(3) และไฮเพอร์กราฟเอกรูปหลายส่วนบริบูรณ์ Kt(n)(3) เมื่อ t=2m, 5*2m, 7*2m, 11*2m, m>=2 และ n>=2 นอกจากนี้เรายังได้นำเสนอการแยกแฮมิลโตเนียนแบบ WJ ของไฮเพอร์กราฟเอกรูปสองส่วนบริบูรณ์ Kn,n(4) เมื่อ n=1 (mod 4) และ n เป็นจำนวนเฉพาะไว้อีกด้วย |
Description: | Thesis (Ph.D.)--Chulalongkorn University, 2021 |
Degree Name: | Doctor of Philosophy |
Degree Level: | Doctoral Degree |
Degree Discipline: | Mathematics |
URI: | http://cuir.car.chula.ac.th/handle/123456789/81625 |
URI: | http://doi.org/10.58837/CHULA.THE.2021.230 |
metadata.dc.identifier.DOI: | 10.58837/CHULA.THE.2021.230 |
Type: | Thesis |
Appears in Collections: | Sci - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
6072843223.pdf | 834.25 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.